ООО “РЦ-АНАЛИТИКА” – Москва – Ликвидатор Задумин Александр Сергеевич

ООО "РЦ-АНАЛИТИКА" - Москва - Ликвидатор Задумин Александр Сергеевич Аналитика

Что должен знать и уметь hr-аналитик?

Наравне с любой другой аналитической должностью, HR-аналитика подразумевает очень высокий уровень личной ответственности. Следовательно, профессиональные навыки для такого специалиста очень важны. Самое основное из того, что должен знать и уметь HR-аналитик, я собрал для вас ниже:

  • отличные знания в сфере C&B (компенсации и льготы) и HR (человеческие ресурсы);
  • понимание менеджмента, аналитики, экономики, статистики и той сферы, в которой действует компания;
  • навыки работы с KPI (разработка и контроль);
  • теоретическое знание бизнес-процессов и бизнес-аналитики.

Очень большим преимуществом для HR-аналитика будет владение иностранным языком. На это есть целый ряд причин: у компании могут быть зарубежные филиалы, клиенты в других странах и иностранные сотрудники в штате.

-50% на все курсы Skillbox

Уникальное предложение — -50% на ВСЕ курсы Skillbox. Получите современную онлайн-профессию, раскройте свой потенциал.

Активировать скидку →

Почему именно такое разделение

Навыки, требуемые БА и СА верхнеуровнево схожи, но дьявол кроется в деталях. Системному аналитику требуется намного больше практических технических навыков для полноценной деятельности, он гораздо ближе к группе технических специалистов и должен лучше понимать их язык (без этого сложно добиться уважения в коллективе, а значит, невозможно транслировать свое видение).

БА в ИТ больше настроен на коммуникацию с бизнесом, его задача — определить нужду (боль), найти, сформулировать и предложить решение проблемы бизнес-заказчика с помощью ИТ систем, в некотором роде «продать» это решение. Близость и понимание пользователя помогают БА эффективнее приоритизировать задачи, описывать нефункциональные требования и ограничения в конкретном случае.

Более того, БА присущи чрезмерные требования к системе, он мыслит целями бизнеса и не должен быть скован возможностями технологий, что для СА неприемлемо. Иногда такие чрезмерные требования БА помогают найти действительно прорывные решения.

При этом есть и ограничения. У БА — это рамки доменной или изученной отрасли (например: глубокое знание правил банковской деятельности), у СА — технологий и системы (например: выдающийся опыт работы с продуктами oracle). Эти ограничения могут быть препятствием при переходе между командами, проектами и компаниями, но быстро устраняются при желании и помощи коллег.

Практически всегда аналитик в команде играет обе роли в большей или меньшей мере  (поэтому хотелось бы избежать споров о совмещении «а у нас БА ещё и вирусолог»). В некоторых случаях аналитики могут быть и не нужны, в некоторых — один специалист может полноценно выполнять обе роли.

Это не нарушает правила, а говорит о совмещении ролей, уровне зрелости и ценности конкретного специалиста. В случае опытного работника — это вполне нормально, но странным выглядит вакансия «junior BA» со знанием SQL, JS и API на всем известном сайте.

Базовые навыки аналитика данных

Для того, чтобы эффективно справляться с описанными задачами, аналитику нужно:

  • иметь отличную математическую базу – за аналитиком не хочется перепроверять выкладки и формулы,
  • понимать базовую теорию вероятности и математическую статистику – нужно уметь проверять гипотезы, понимать ошибки разного рода, зависимость / независимость испытаний и т. д.
  • иметь математическую культуру – если аналитик использует метод или алгоритм, он должен знать область его применимости,
  • обладать критическим мышлением – реже, чем другие люди попадаться в ловушки когнитивных искажений,
  • обладать продуктовым мышлением – уметь оцифровывать пользовательский опыт в метриках, а также видеть за метриками пользователей, пытающихся решить определенную задачу,
  • обладать бизнесовым мышлением – уметь оцифровывать бизнес-процессы компании и изменения рынка, связать это воедино с продуктом и пользователями,
  • быть технарём – аналитик не обязан программировать как разработчик (эффективно, отказоустойчиво и масштабируемо), но у него не должно быть технических блокеров для того, чтобы решать задачи бизнеса: почитать документацию, сходить в какую-то новую БД и вытащить нужные данные, написать парсер, воспользоваться каким-то API для автоматизации и т. д.

Важное свойство хорошего аналитика — объективность по отношению к самому себе. Аналитик должен контролировать собственное желание казаться лучше, чем он есть. Даже самые сильные аналитики ошибаются (это нормально и без ошибок невозможно развитие), очень важно уметь отслеживать свои ошибки и быстро доносить их до команды, особенно если это может изменить принятое ранее решение. Сокрытие ошибок — флаг профнепригодности аналитика.

В Яндекс.Такси аналитики закреплены за какими-то командами, но мы не придаём большого значения предметной области: маркетинг, продукт или операционка — требования к уровню мышления, описанные выше, позволяют переключаться с одного на другое (разумеется, требуется время на погружение).

Внедрение и применение результатов работы

Как правило младший аналитик не в состоянии подготовить аналитический отчет или исследование в формате рекомендаций с понятным обоснованием. И тем более не способен довести свои рекомендации и выводы до уровня реальных изменений на уровне продукта, процессов или бизнеса.

Младшие аналитики всё ещё приносят мало пользы бизнесу, поэтому критично чтобы они как можно быстрее росли. Принцип, прокачивающий младшего аналитика, – “делай как я”. Аналитик постарше (в присутствии младшего) обсуждает новую задачу с командой проекта, задаёт уточняющие вопросы, погружается в контекст проблемы, и в результате этого диалога возникает подход к решению.

Дальше этот подход старший товарищ декомпозируют на задачи по обработке данных для младшего аналитика. Это позволяет наблюдать, как проблемы бизнеса превращаются в задачи на написание кода и рисование графиков и находят своё решение в них. Со временем младший аналитик должен научиться делать это самостоятельно.

Почему важно глубоко обсуждать постановку задачи с младшими аналитиками
Обычно при ведении проекта возникают вопросы и проблемы, с которыми могут помочь аналитики. Вместе с идеей сходить к аналитику у бизнес-заказчика, как правило, возникает и примерное решение, с запросом на которое он, скорее всего, и придет («а построй мне вот такой график?»). Но у проектного менеджера, дизайнера или продакта может просто не хватать информации о том, какие ещё есть данные и инструменты для получения ответа. Возможно, существует более точный способ дать ответ или более простой. Может быть, в рамках возникшей гипотезы вообще не нужно обрабатывать данные, а достаточно посмотреть на дешборд, где будет пусть не идеальный, но график, позволяющий с некоторыми допущениями ответить на заданный вопрос.

Где учиться

Для самостоятельного обучения с нуля используйте книги. Сначала изучите математический анализ, математическую статистику. Затем прочитайте учебники о дискретной математике, изучите программирование на Python.

Где учиться, если вы хотите получить информацию в полном объеме и быстро войти в профессию? Обратите внимание на специальные курсы!

Курс «Data Scientist» предполагает год обучения (с марта 2020-го по февраль 2021 года) с онлайн-вебинарами и очными лекциями в Москве. Студенты научатся строить и обучать предиктивные модели при помощи нейросетей и алгоритмов машинного обучения. Выпускники получат диплом о профессиональной переподготовке, помощь в составлении резюме. Им предложат вакансии и подготовят к собеседованию.

Цена: 190 000 рублей. Подробнее >>>

Курс «Профессия Data Scientist» – это 300 часов онлайн-обучения и работа с реальными данными в практических заданиях. Авторы курса гарантируют помощь в трудоустройстве с тремя собеседованиями у компаний-партнеров. Выпускники получат два диплома: подтверждение знаний в машинном обучении и аналитике больших данных.

Курс рассчитан на самостоятельное обучение, которое в среднем занимает около года.

Стоимость – 3900 рублей в месяц. При этом первый платеж необходимо сделать лишь после 6 месяцев обучения, можно взять кредит до трех лет. Подробнее >>>

Зачем бизнесу анализировать данные

Представьте, что вы управляете продуктовым магазином. Как узнать, чего хочет покупатель? Спросите его — и услышите, какие товары он приобретает чаще, в какое время обычно ходит за покупками.

Дополнительный анализ:  Как сделать так, чтобы сотрудник уволился по собственному желанию без негативный последствий

Но масса деталей останется за кадром. Например, именно аналитики знают, как на покупки влияет заполненность полок, плохая погода, фоновая музыка.

Все эти и другие данные можно собрать и проанализировать. Это поможет супермаркету расставить товар так, чтобы покупатель как можно дольше оставался в торговом зале и обращал внимание на нужные предложения, и пересмотреть график работы кассиров, чтобы уменьшить очереди на кассах.

Найти применение большим данным можно в любой сфере:

  • На заводах система компьютерного зрения следит за рабочими. Система заметит, если кто‑то забыл про каску, и напомнит о правилах безопасности.
  • В банках анализ больших данных диктует условия кредитов и депозитов, выявляет хакерские атаки и подозрительные операции.
  • Городами тоже управляют большие данные. Умные светофоры уменьшают пробки, компьютерное зрение ищет преступников в толпе. С аналитиками советуются, прежде чем построить новую дорогу или центр госуслуг, изменить маршрут автобуса.

На основе данных можно построить модели и проверить гипотезы. Модель — это математическое описание любой ситуации, которое помогает предположить будущее. Например, модель прогнозирования спроса в торговой сети предскажет, как будет меняться востребованность отдельных товаров, поможет скорректировать цены и объёмы закупок.

Как стать аналитиком данных

Традиционно для IT-профессий, у человека, желающего освоить одну из них, есть три очевидных пути, каждый из которых обладает своими особенностями:

  1. Самоучка. Благодаря интернету не составит труда найти литературу и видеоматериалы, позволяющие изучить различные аспекты работы аналитика данных. Но на фоне единственного преимущества в том, что этот способ бесплатный, у него есть множество недостатков, связанных с отсутствием систематичности, сложностью с оценкой актуальности усваиваемой информации, невозможностью впоследствии доказать получение специальных знаний и пр.
  2. ВУЗ. Если поступить в высшее учебное заведение, то в этом случае можно получить весь необходимый объем знаний. Проблема в том, что информации будет слишком много, т. к. первые 2-3 года студентам дают множество дисциплин, напрямую не связанных с выбранной профессией. То есть программа обучения сильно растягивается по времени, а стоимость этого самого обучения совсем не маленькая. Причем в вузах обычно мало практики, а лишь пустая теория, да компетентность отдельных преподавателей порой под большим вопросом.
  3. Курсы – идеальный баланс между самообучением и вузом. С одной стороны, обучение происходит в довольно короткие сроки и стоит значительно дешевле, чем в вузе. С другой стороны, студент последовательно получает весь необходимый ему объем знаний и тут же усваивает их на практике, работая над реальными проектами, а по окончании получает сертификат, с которым не составит труда найти хорошую работу.

Посмотрите → актуальную подборку курсов по анализу данных и выберите подходящую программу обучения

Познакомившись со спецификой работы аналитика данных и путей освоения этой профессии, напишите в комментариях, чем вам нравится или не нравится Data Analyst и какой путь ее освоения вы бы выбрали для себя?

Кто такой аналитик

Первые упоминания о профессии датируются IV в. до н.э., но описание сути работы древних аналитиков отличается от того, что привычно сегодня. Раньше они занимались исследованиями в области общечеловеческих вопросов, историей. Сегодня под это определение подпадает человек, имеющий высокий уровень квалификации в какой-то области или конкретном вопросе.

Аналитики бывают разными в соответствии с типом специализации:

  • финансовый — эксперт в финансовых делах. Следит за трендами, делает прогнозы по величине прибыли и объемам расходов, анализирует данные по ценным бумагам;
  • спортивный — наблюдает за спортивными соревнованиями, жизнью спортсменов, развитием профессиональных клубов и т.д. По результатам своих исследований он делает различные прогнозы, которые продает за деньги. Это может касаться ставок на матч, исход турнира, положение клуба в рейтинге, даже популярность спортсмена у публики;
  • биржевой — оценивает события на биржевых рынках. По результатам исследований дает советы инвесторам, сам вкладывает деньги клиентов в перспективные проекты, разрабатывает долгосрочные стратегии;
  • системный — занимается анализом процессов, чтобы на основании полученных данных автоматизировать их, разработать модели пунктов для программного обеспечения;
  • консультант по бизнесу — изучает компании на заказ. Это делается для повышения рентабельности предприятий, оценки целесообразности объединения фирм, их покупки, поиска выхода из затруднений;
  • web-аналитик — анализирует данные, собранные с разных тематических и профессиональных порталов. Цели такой работы могут быть разными. Например, оценка популярности бренда, поиск ниши для какого-либо продукта;
  • IT-эксперт — технический специалист, перед которым обычно ставят задачи по автоматизации предприятия. Он собирает данные с каждого этапа производственного процесса, составляет план с описанием функционала ПО;
  • аналитик компьютерных систем — эксперт по компьютерным программам. Он их разрабатывает, проверяет, подбирает оптимальные варианты приложений.

Кто такой бизнес-аналитик и как помогает компаниям быть на шаг впереди

Дата сайентисты и системные аналитики сильнее в программировании, лучше разбираются в инструментах BI, организации системы хранения и обработки данных.

Маркетинговые аналитики работают с BI, оптимизируют маркетинговые кампании, экономику продаж.

Финансовые аналитики разбираются в финансовых инструментах, инвестициях, кредитах и займах, условиях финансирования.

Продуктовые аналитики лучше знают метрики, связанные с конкретными продуктами, и инструменты для анализа работы эффективности продуктов (performance).

Наконец, бизнес-аналитики погружаются в выстраивание процессов, экономику, финансы, исследования. Работают с BI и отчётностью, визуализируют данные.

Посмотрим, в каких командах задействованы бизнес-аналитики и какова их роль в каждой из них.

Чаще всего бизнес-аналитики работают в консалтинговом подразделении — внутреннем отделе или в консалтинговой компании. Под консалтингом подразумеваем управленческий консалтинг, среди известных представителей которого компании McKinsey, PWC, Deloitte, Ernst&Young.

Консалтинг — это проектные команды, которые решают задачи по изменению компании. Имеется в виду изменение бизнес-процессов — допустим, закупок, найма и онбординга, системы KPI — или создание и внедрение новых проектов.

Пример. Перед запуском системы для оплаты проезда «Тройка» в Московском метро консультанты просчитали экономику, затраты, ресурсы, схему работы.

Это подразделение компании, которое занимается долгосрочным планированием и развитием бизнеса. Например, аналитики решают, будет ли компания приобретать новые активы, запускать новые направления бизнеса.

Пример. Помимо «Северстали» и добывающих предприятий «Севергрупп» решила развиваться через создание цифровых активов, в частности, купив онлайн-ритейлера «Утконос».

Подразделение компании, которое внедряет цифровые технологии для оптимизации бизнес-процессов, повышения ценности для клиентов, разработки инноваций и улучшения организационных результатов.

Использование инструментов обмена данными, Интернета вещей позволяет получать метрики от больших производственных машин, объединять их в единую экосистему и минимизировать потери, к примеру, металла, а также оптимизировать трудозатраты.

Пример. Цифровая трансформация в металлургической или тяжёлой промышленности — это работа по внедрению ИТ-систем, в результате чего часть процессов автоматизируют, а часть оптимизируют.

Это команда, которая создаёт инструменты для сбора данных и далее для управления компанией на основе данных. Например, инструмент для сбора данных Share point для сотрудников или автоматический сбор данных.

BI — решение на собственном движке или внутри сервисов Tableau, Power BI, QlikView. Позволяет создавать автоматические отчёты, которые демонстрируют эффективность работы компании.

Аналитики в операционных командах могут посчитать финансовую модель проекта: сколько денег нужно вложить для реализации проекта, где целесообразно купить существующую компанию для выхода на рынок, а где — создать компанию с нуля.

В таких случаях это смежная с менеджментом специальность.

Пример. В Яндексе операционная команда запускает бизнес в новых городах и странах.

Функция, близкая к отчётности и стратегии. Такие команды создают системы KPI, поддерживают OKR (инструменты планирования), премии, расчёт показателей эффективности, бонусы — количественные показатели, которые крупные компании используют для сохранения конкурентоспособности и развития.

Business Intelligence (BI) — бизнес-аналитика, точнее — анализ бизнес-данных для принятия управленческих решений

Профессия: аналитик данных

Кто такой аналитик

В чём заключается моя работа

Как я стала аналитиком

Где учат на аналитиков

Какие качества нужны, чтобы успешно работать аналитиком

Карьера, график работы, зарплата

Аналитик данных в будущем

Аналитик — специалист, который занимается обработкой данных и составлением на их основе прогнозов, стратегий, планов и рекомендаций клиентам.

Существует несколько профессий, в названии которых также есть слово «аналитик» — финансовые аналитики, программные аналитики, системные аналитики. Все они занимаются анализом той или иной информации, но не обязательно используют в своей деятельности математику, статистику и языки программирования. Их нужно отличать от отдельной профессии «аналитик данных».

Дополнительный анализ:  Системный аналитик: что это за профессия и сколько получают специалисты

Аналитик данных должен хорошо разбираться в математике, статистике, информатике, компьютерных науках, бизнесе и экономике.

Данные, которые обрабатывает аналитик, зависят от сферы деятельности, которой он занимается. Например, аналитик в области рекламы определяет целевую аудиторию для рекламных кампаний: составляет алгоритм, с помощью которого ищет в базах данных информацию о потенциальных клиентах, анализирует рекламные стратегии с точки зрения отклика, оценивает показатели эффективности кампаний.

Я работаю ведущим аналитиком в рекламном подразделении таргетированных смс-рассылок мобильного оператора. По соображениям конфиденциальности назвать компанию я не могу, она входит в так называемую «большую тройку». Моё подразделение занимается рассылкой рекламы абонентам, сегментируя их по опредёленным социально-демографическим, поведенческим и другим признакам. Аналитик занимается тем, что из всей абонентской базы выбирает абонентов, которые отвечают этим признакам, чтобы рекламодатель рассылал рекламу именно тем людям, которых она может заинтересовать.

Например, к нам приходит клиент, директор стоматологии, и заказывает рекламную кампанию. Аналитик и клиент вместе определяют набор признаков, по которым абоненты могли бы заинтересоваться этой конкретной стоматологией — проживание в определённом районе, обращение за стоматологическими услугами в недалёком прошлом и так далее. Составив список этих признаков, аналитик направляет запросы в базу данных, чтобы реклама была отправлена релевантным абонентам. Для формирования запросов используется специальный язык программирования SQL, предназначенный для работы с базами данных.

Такая реклама называется таргетированной, от английского слова target — цель. Основная задача аналитика — правильно определить эту цель. Чем точнее определён круг признаков и правильнее составлен запрос, тем успешней рекламная кампания.

По результатам кампании аналитики собирают и анализируют данные о её эффективности: смотрят, как много абонентов откликнулись на рекламу— , то есть позвонили по указанным телефонам, обратились в эту стоматологию;, и анализируют, от чего зависит эффективность рекламы, когда она срабатывает, а когда нет. Это похоже на настоящее научное исследование.

Меня с детства интересовали математика и программирование, работа с данными, таблицами, поиск и анализ закономерностей. Работа аналитика включает все эти аспекты.

Я закончила НИУ ВШЭ по направлению, связанному с маркетингом. На факультете нам преподавали математику, статистику, прогнозирование, эконометрику, и эти предметы мне нравились больше всего. Кроме того, я занималась программированием на дополнительных курсах.

После окончания вуза я стала работать в PR, но вскоре поняла, что эта сфера деятельности мне не нравится. Мне было неинтересно, работала я через силу, заставляя себя приходить в офис. Поэтому я решила сменить направление. В вузе я узнала, как работает статистика, какие математические инструменты используются для анализа данных, познакомилась с языком программирования SQL. С этими навыками в резюме я решила посмотреть вакансии аналитика и вскоре нашла мою нынешнюю работу. Поначалу мне поручали и другие задачи, но постепенно аналитика стала моим основным занятием.

За три года я стала ведущим аналитиком— руководителем подразделения. В мои обязанности входит не только составление запросов в базы данных, но и распределение задач внутри моей команды, взаимодействие с заказчиками рекламных кампаний или аккаунт-менеджерами, которые ведут этого рекламодателя.

Профессию аналитика получают на направлениях, связанных с информатикой, математикой, программированием. Эти направления есть практически во всех ведущих вузах страны.

Список вузов от редакции:
МГУ им. М.В. Ломоносова — факультет вычислительной математики и кибернетики, направление «Прикладная математика и информатика».

СПБГУ — направления «Математика и компьютерные науки», «Математика, алгоритмы и анализ данных», «Прикладная математика и информатика», «Прикладная математика, фундаментальная информатика и программирование», «Программирование и информационные технологии», «Системный анализ и прикладные компьютерные технологии».

НИУ ВШЭ — направления «Экономика и статистика», «Бизнес-информатика», «Прикладная математика и информатика».

Национальный исследовательский университет МЭИ — Институт автоматики и вычислительной техники, направление «Прикладная математика и информатика».

Национальный исследовательский технологический университет МИСиС — факультет «Информатика и вычислительная техника».

Московский политехнический университет — факультет информационных технологий, направление «Прикладная информатика (большие и открытые данные)», «Прикладная математика и информатика», «Бизнес-информатика (IT-менеджмент)».

Московский технический университет связи и информатики (МТУСИ) — факультет экономики и управления (ФЭУ), направление «Прикладная информатика».

Финансовая академия при правительстве России — направления «Прикладная математика и информатика», «Бизнес-информатика», «Прикладная информатика».

Работа аналитика по большей части заключается в том, чтобы взаимодействовать с компьютером, а не с людьми. Аналитик, если он не руководитель подразделения, мало общается даже с коллегами, не говоря уже о клиентах. Он не проводит встреч, его рабочий день проходит у монитора за обработкой данных. Есть люди, которым обязательно нужно общение — им такая работа не подойдёт!

Важно, чтобы человеку нравилось оперировать статистическими данными, составлять графики и таблицы, видеть закономерности, структурировать информацию, выделять главное, отбрасывать второстепенное.

Аналитик — профессия не творческая. Каждый день аналитику приходится заниматься одним и тем же: сбором, анализом, оценкой данных. Эта работа очень похожа на главное увлечение моего детства — собирание пазлов. Мне доставляло удовольствие взять набор непонятных разрозненных деталей и часами собирать из них что-то целостное, разумное, имеющее смысл. Так же работают и аналитики.

Аналитик по большей части имеет дело с точными категориями: данными, цифрами, алгоритмами. Составляя запросы, нужно совершать как можно меньше ошибок и максимально точно подбирать аудиторию.

Аналитик должен учитывать все факторы, которые могут повлиять на результат анализа, не упустить ни одной важной детали, иначе на выходе он получит неверные данные и сделает ошибочные выводы.

Карьера. Внутри компании можно из простого аналитика стать тимлидом, руководителем подразделения и развиваться в направлении менеджмента — разрабатывать и курировать собственные продукты, придумывать стратегии их развития.

Можно совершенствовать навыки программирования, повышать свою квалификацию как аналитика данных, переходить в более крупные компании, на более востребованное и престижное направление, заниматься дата-моделированием, большими данными (big data), делать прогнозы и предсказания.

График работы. Аналитики в офисе работают по обычному графику с 9:00 до 18.00 или с 10:00 до 19:00. Иногда приходится задерживаться на работе, но это зависит от нагрузки конкретного аналитика.

Аналитик может работать и удалённо: консультировать заказчиков, которым необходим анализ данных, писать приложения. Всё, что ему для этого нужно — компьютер или ноутбук, выход в интернет и доступ к базам данных.

Зарплата. Зарплата аналитика зависит от его опыта и квалификации, от компании, в которой он работает. В начале карьерного пути я получала 45 тысяч рублей, сейчас зарабатываю больше.

Средняя зарплата аналитика в Москве — 70 тысяч рублей. Начинающий аналитик сразу после окончания вуза может получать от 25 тысяч рублей.

Современный бизнес во многом строится на анализе данных о клиентах, продажах, эффективности рекламных стратегий, поэтому профессия аналитика сейчас очень востребована и останется такой в ближайшие десятилетия. Перспективные направления: работа с большими данными, дата-моделирование, экономическое прогнозирование. Кроме того, умение работать с большим количеством информации (анализировать, структурировать её, делать выводы) востребовано не только в экономике и финансах, но в любой другой сфере деятельности.

Я считаю, что профессию надо выбирать по зову сердца, ориентируясь на то, что нравится делать. Какой бы перспективной ни была профессия, в ней невозможно достичь высот, если не получаешь от неё удовольствия.

Работа

Ведение аналитической отчетности (продажи, остатки, оборачиваемость, наценка). ⁃ Аналитика продаж по товарным категориям, SKU, размерам. ⁃ ABC анализ. ⁃ Просчет и анализ акций…

Глубокое знание Excel (сложные формулы, макросы, сводные таблицы) , Google sheet. ⁃ Исполнительность, внимательность, умение работать с большими объемами данных.

§

Помощь сотрудникам отдела в рамках текущих направлений. Постановка задач командам департамента – дизайн, копирайт, аналитика, SMM, SEM, mobile, OLs, PR, POS…

Аналитический склад ума, умение работать с большим массивом данных и внимательность к деталям. Коммуникабельность, умение работать в большой команде.

§

…клиентами, журналистами, блогерами и подрядчиками. Поделимся экспертизой, научим писать тексты, делать емкие и понятные презентации, отчеты, аналитику и попрактикуем английский.

опыт работы с таблицами, презентациями и большим объемом данных. – понимание сферы интегрированных коммуникаций, умение ориентироваться в трендах медиасреды. –

§

Проведение организационной диагностики (интервью, анкетирование, анализ документов, изучение бизнес-процессов) и формирование рекомендаций. Разработка нормативно-методической документации (политики, регламенты, шаблоны…

Нотации – IDEF0, IDEF3, BPMN 2.0. Опыт анализа качественных и количественных данных (математик, экономист, аналитик, бизнес-аналитик, социолог…

Сложность решаемых задач и глубина решения

Аналитик на этом уровне справляется с большинством простых задач самостоятельно. Однако с учетом небольшого опыта решения задач именно в бизнесовой постановке (с обработкой данных, как мы помним, всё нормально уже с уровня джуниора), аналитику на этом грейде может не хватать глубины мышления или ширины контекста, чтобы лучше понимать природу сложных задач и подбирать лучший способ решения.

Как правило трудности вызывают:

  • ситуации с высокой степенью неопределенности,
  • задачи вокруг сложных и многослойных бизнес-процессов,
  • задачи со сложным заказчиком, когда нужно аккуратно работать с возражениями.

В этих ситуациях аналитику 1 требуется помощь старшего товарища для понимания задачи, её декомпозиции или презентации результатов (чтобы они были применены).

Аналитик 1 – чаще других грейдов сталкивается с проявлением синдрома Даннинга-Крюгера. Он уже стал самостоятельным, научился помогать бизнесу, поэтому ему кажется, что ему любая задача по плечу (и вообще он уже дорос до старшего аналитика).

Проблема в том, что Аналитик 1 не понимает, в какой из своих задач он мог бы копнуть глубже. Поэтому руководитель такого аналитика старается быть в курсе почти всех его задач и выбранных способов решения. Формат контроля может быть разный, например: стендапы всей команды или регулярные встречи 1 на 1.

Дополнительный анализ:  Металлургия для фондового рынка. Аналитика черных металлов.

Аналитик 1 хорошо (и самостоятельно) справляется с задачами, которые имеют понятный путь к решению, например, подготовка и анализ рутинного а/б теста. Если аналитик проявляет проактивную позицию и не только отвечает на прямой вопрос а/б теста «можно катить или нет?», а смотрит (и находит!) проблемы в каких-то срезах, что позволяет улучшить показатели продукта, – это инициатива уже на грейд выше.

Сложные комплексные исследования аналитик 1 может делать только под присмотром наставника, который помогает и с сутью, и с декомпозицией и, зачастую, с оформлением и презентацией результата.

Хард скилы

Python с библиотеками для анализа данных Pandas и NumPy

. Это мастхэв, его знание хотя бы на базовом уровне требуют 83% компаний в отрасли. Знание R, JavaScript и других ЯП нужны всего лишь 17% работодателям.

Интересно, что в 2021 году по результатам опроса дата-аналитиков и дата-сайентистов язык R в аналитике данных был куда популярнее — его использовали 61% специалистов.SQL

— практически во всех вакансиях требуется знание SQL и навыки работы с реляционными базами данных. Чаще всего требуют умение писать запросы и оптимизировать их.

Навыки работы с NoSQL системами управления базами данных вроде MongoDB, CouchDB или Apache Cassandra работодатели требуют довольно редко — примерно 9% вакансий.

Power BI, Qlik, Tableau. Большинство компаний не требует знаний какой-нибудь конкретной программы визуализации данных. Обычно они указывают одну из трех на выбор или пишут «системы визуализации данных» без указания конкретной. В целом специалисты могут сами выбирать, что именно им удобнее использовать. Принципиальной позиции у абсолютного большинства работодателей нет.

Опыт работы с Agile, Scrum, Kanban. Почти в половине вакансий работодатели указывают, что дополнительным плюсом будет умение работать с гибкими методологиями создания продуктов.

То есть важно не только то, что делает аналитик данных в рамках своей специальности, но и то, как он это делает.


Но ключевым требованием опыт работы с Agile не является (хоть его и указывают в вакансиях). Да, соискателю придется потратить время, чтобы привыкнуть работать в таком формате, но, по мнению компаний, это не критично.

Excel и Google Sheets. Как ни странно, но в трети вакансий требуется знание электронных таблиц. В основном это нужно продуктовым и консалтинговым компаниям, которые довольно мало пересекаются с диджитал-разработкой, или же относительно небольшим проектам, где весь отдел аналитики состоит из нескольких человек.

Действительно, маленьким командам часто незачем использовать мощные ресурсы SQL, если для обработки данных вполне хватает и обычного Excel. Но в таких ситуациях «аналитик данных» часто занимается сразу всем: сбором и анализом данных, инфраструктурой и автоматизацией.

Многие компании выделяют высокий уровень математической подготовки. Но здесь нужно понимать, что Data Analyst, в отличие от Data Scientist, использует довольно ограниченные математические инструменты, поэтому не нужно быть гением математики.

Высшее образование в области математики пригодится, но при должном усердии все необходимые функции можно изучить и самому. Но для Data Scientist глубокое знание математики уже считается критичным. Если вы планируете расти из Data Analyst в Data Scientist, то математику нужно будет подтянуть.

По основным хард скилам это все. Остальные встречаются менее чем в 10% вакансий, поэтому их можно отнести к индивидуальным особенностям работы в отдельных компаниях.

Ооо рц-аналитика, москва, инн 7718304921, огрн 5147746272031 окпо 17721637 – реквизиты, отзывы, контакты, рейтинг

Вместо вывода

Из каждого утюга слышно, что со временем сложность бизнес-проблем и их ИТ-решений возрастает по экспоненте. Наравне с этим стек технологий развивается интенсивно и экстенсивно, вширь и вглубь. Выбор правильной композиции технологий может дать прорывные конкурентные преимущества, но и действовать губительно, часто выбор осуществляется на годы вперед, ставя разработчиков в узкие рамки.

Сложившаяся ситуация требует от ИТ аналитиков (1) глубокого познания предметной области бизнеса, особенностей внутренних процессов, внешней среды и трендов, (2) не менее глубоких знаний технологий, часто практического их использования.

Можно быть идеалистом, искать гения и требовать от него высокого понимания различных, если не полярных областей знаний. Можно спуститься на землю и понять, что такая двойственность обязанностей с большой вероятностью приведет к факапу в обоих направлениях. Сидеть на двух стульях — не лучшая практика.

Если сложность проекта требует наличия БА и СА, то для начала следует сформировать понятие, какой уровень знания бизнеса и технических особенностей нужен от специалиста и транслировать его в публикуемую вакансию, стратегию собеседования и тестирования.

Коллегам, нашедшим себя или планирующим работать БА или СА, советую провести такую же процедуру и честно понять для себя, хотите ли вы (1) искать зерно истины в часто не поддающемся алгоритмам и логике, постоянно изменяющемся бизнесе или (2) исследовать и проектировать сложные, запутанные, но интересные системы.

В заключение

С тех пор, как я впервые формализовал и внедрил грейды в своей команде, я не представляю, как от них можно отказаться. Грейды так прочно засели в моём сознании менеджера, что теперь про все задачи, связанные с людьми, я думаю в терминах грейдов: найм, развитие, материальная мотивация, кому какую зону ответственности стоит доверить и т.д.

Если вы руководите аналитиками, надеюсь, фреймворк окажется вам полезен – и, спустя время, вы разделите мой энтузиазм =).

Для того, чтобы начать чувствовать систему грейдов «на кончиках пальцев» требуется много практики. Как руководителю вам нужно выставить грейд хотя бы паре десятков сотрудников, чтобы разобраться в нюансах и пограничных ситуациях.

Если вы аналитик, можете использовать этот материал как гайд по профессиональному и личностному росту. Пришлите эту статью вашему руководителю и предложите на следующей регулярной встрече обсудить, на какой ступени аналитики вы сейчас находитесь, над чем вам стоит поработать, чтобы перебраться на следующую. Заданная система координат позволяет вести подобные разговоры содержательно и ёмко.

Если по прочтении у вас остались вопросы – не стесняйтесь задавать их в комментариях и в чате «Ask Kevin!» или мне лично.

Оцените статью
Аналитик-эксперт
Добавить комментарий

Adblock
detector