Лучшая работа в авиации — Алекс Мачерас занимается проверкой новых

Лучшая работа в авиации — Алекс Мачерас занимается проверкой новых Аналитика
Содержание
  1. Digit twins. что это такое?
  2. Введение
  3. Big data для повышения уровня удовлетворённости клиентов и персонализации
  4. Big data и другие сферы гражданской авиации
  5. Big data и поддержание летной годности воздушных судов
  6. Авиазаправка на блокчейн
  7. Автоматизированная система поддержания летной годности с использованием технологий big data
  8. Анализ big data для сегментации клиентов
  9. Анализ и оценка маркетинговых инициатив при помощи решений big data
  10. Лучшая работа в авиации — алекс мачерас занимается проверкой новых самолетов
  11. Обеспечение авиационной безопасности с помощью искусственного интеллекта и big data
  12. Оснащение самолетов авиакомпании “победа” rfid-метками
  13. Применение big data для анализа и прогнозирования спроса на авиаперевозки
  14. Примеры сокращения расходов топлива и выбросов при переходе к технологиям big data
  15. Прогнозирование задержек рейсов с помощью big data
  16. Работа: аналитик гражданской авиации в москве — июль 2021 – 11 вакансий |
  17. Ремонт и техническое обслуживание с использованием больших данных
  18. Создание центра инноваций в области гражданской авиации для укрепления экспертизы в области big data
  19. Чат-боты
  20. Заключение

Digit twins. что это такое?

С темой предиктивных (проактивных) ремонтов также тесно связано использование так называемых “цифровых двойников” (“digital twins”). Однако в отличие, например, от нефтегазовой отрасли, где ЦД уже используются рядом крупных компаний на практике, в авиационной отрасли эта тема пока больше обсуждается на уровне экспертов и аналитиков.

Эксперты авиационной отрасли в 2021 году стали активно продвигать тему использования “digital twins”: руководство шведской компании IFS, разработчика ПО для корпоративных клиентов, в том числе из авиационной отрасли, заявило в апреле 2021 года, что одной из технологических инноваций, способной помочь авиакомпаниям обеспечивать эффективную эксплуатацию судов при одновременном снижении расходов на ТО и ремонты, являются “цифровые двойники”[4].

https://www.youtube.com/watch?v=8RpzllugJm4

Цифровые двойники ― это виртуальные реплики физических активов, способные демонстрировать инженерам на земле работу двигателя, в то время как самолёт находится в воздухе. Чтобы сделать это возможным, инженеры устанавливают на этапе проектирования и производства двигателя тысячи точек сбора данных.

Затем они используются для создания цифровой модели, которая отслеживает и контролирует двигатель в режиме реального времени, обеспечивая необходимую информацию на протяжении всего его жизненного цикла, например, температуру, давление и расход воздуха.

GE помогла разработать цифровой двойник для посадочного устройства самолета. Сенсоры были размещены на частях шасси, наиболее подверженным поломкам. В режиме реального времени такие данные, как давление и температура, передавались специалистам, помогая прогнозировать сбои в работе или остающийся срок службы. Эти данные сравнивались с данными цифрового двойника, который подвергался аналогичным нагрузкам.

Согласно IDC, компании, инвестирующие в ЦД, способны на 30% сократить время, требуемое для реализации критических работ, включая ТО. Аналитики ожидают, что в 2021 году технология станет более зрелой и обеспечит дополнительные преимущества для пользователей.

Введение

Согласно прогнозу аналитиков, 67% компаний из аэрокосмической отрасли реализуют проекты на основе Big Data, ещё 10% планируют такие проекты. Что касается авиакомпаний, то здесь реализация проектов на февраль 2021 года заявлена у 44% компаний, а планы на такие проекты анонсировали 25%.

Это результаты исследования, которое провела в декабре 2021 года компания FlightGlobal относительно роли Big Data для аэрокосмических предприятий и авиакомпаний. Аналитики также выяснили мнение по поводу совместного использования данных по состоянию самолётов с производителями и компаниями, осуществляющими ремонт и техническое обслуживание (ТО)[1].

Приблизительно половина респондентов ответила, что их компании используют массивы данных о состоянии самолётов, что помогает им принимать более выверенные решения. В ближайшей перспективе доля таких компаний вырастет до 75%.

Совместное использование данных с OEM/MRO всё ещё остаётся проблематичным. Однако 38% авиакомпаний полагают, что такая модель может обеспечить им значительные бизнес-преимущества.

Согласно данным из опубликованного в мае 2021 года обзора компании Honeywell “Connected Aircraft”[2], 47% опрошенных авиакомпаний планируют потратить в целях подключения воздушных судов к Сети до 1 млн. долларов в течение следующего года на каждый самолёт, эксплуатируемый ими.

До февраля 2021 года при инвестировании авиакомпаниями в смежные к авиации технологии (connected technologies) речь шла, прежде всего, об обеспечении спутниковой связи и Wi-Fi. Теперь же компании готовы извлекать выгоду из тех данных, которые они могут получать путем использования оборудования непосредственно на борту самолётов.

Big data для повышения уровня удовлетворённости клиентов и персонализации

Входящая в TOP 10 по пассажиропотоку компания British Airways использует с 2021 года Big Data Analytics для повышения уровня обслуживания своих клиентов: Перевозчик собирает различные данные по пассажирам в специальном хранилище, а затем загружает их в программу под названием “Know Me”[15].

“Know Me” содержит различные данные по пассажирам: поведение при онлайн-заказах, пожелания при совершении покупок, предпочтения при выборе места. Вся эта информация автоматически генерируется и автоматически используется при следующем бронировании, осуществляемом клиентом.

Программа работает с помощью аналитического программного обеспечения от Opera Solutions. Также используется поиск по фото Google Image Search, что позволяет сотрудникам авиакомпании распознавать особо важных и много летающих пассажиров уже в тот момент, когда они входят в аэропорт или бизнес-ложу, и, соответственно, предлагать им обслуживание высшего класса.

Big data и другие сферы гражданской авиации

Технологии Big Data находят свое применение и в других сферах гражданской авиации.

Разработчики Spafax, провайдера развлекательных решений для авиакомпаний, создали в июне 2021 года базовые рабочие прототипы решений на базе искусственного интеллекта для их интеграции в бортовую развлекательную платформу с функциональной возможностью персонализации, которая используется рядом авиакомпаний, включая American Airlines, Lufthansa и SWISS[23].

Первое решение ― модель чат-бота, который приближен к человеческому общению. При этом для улучшения диалоговых возможностей было использовано приложение на базе машинного обучения под названием LUIS (Language Understanding Intelligence Service).

Кроме того, в чат-бот интегрированы когнитивные сервисы, в частности распознавание лиц. Благодаря этому клиенты авиакомпаний смогут запросить для просмотра на борту список фильмов, в которых играет определённый актёр. Для этого требуется только загрузить в приложение фотографию этого актёра.

Второе решение ― приложение на базе искусственного интеллекта для анализа видеоконтента с использованием машинного обучения. Платформа получила возможность выявлять определённые объекты, сценарии или контент с ограничениями по возрасту, что часто требуется в соответствии с требованиями авиакомпаний по контенту.

В апреле 2021 года компания FoxTripper впервые продемонстрировала программу с “перемещающейся картой”[24]. Программа предоставляет пассажирам информацию о тех местах, над которыми пролетает самолёт, и позволяет пассажирам осуществлять бронирования в пунктах назначения.

Другой интересный пример ― Gogo Air. Эта компания-разработчик информационно-развлекательной системы для пассажиров в полёте использует искусственный интеллект и машинное обучение для того, чтобы помочь авиакомпаниям повысить уровень оказываемых услуг[25].

Предоставляя развлекательный контент и Wi-Fi-доступ в полёте, Gogo Air собирает информацию о пассажирах, пользующихся этими сервисами. Затем эта информация подвергается обработке и анализу. В результате авиакомпании получают те данные, которые помогают им улучшить обслуживание клиентов и, зачастую, предложить своим пассажирам более таргетированные продукты.

Авиакомпании используют получаемые данные для персонализации сервисов на базе ситуационного контекста, например, адаптируя под клиента экраны информационно-развлекательных систем в самолёте в зависимости от длины полёта, используемых пассажиром устройств, пункта назначения.

Не остаются в стороне и технологии организации питания на борту. Так, в апреле 2021 года в Гамбурге компания Black Swan Data, разрабатывающая решения для анализа данных, заключила соглашение о сотрудничестве с gategroup[26].

Цель сотрудничества ― анализ данных пассажиров и трендов в социальных сетях для прогнозирования того, какое меню в самолёте выберут пассажиры. Пассажиры смогут заказывать и рассчитывать на получение своих любимых блюд уже после посадки. Пилотный проект двух компаний продемонстрировал неплохие результаты: Удалось сократить отходы по продуктам питания на 50% и повысить производительность на 15%.

Дополнительный анализ:  Вакансии « Ассоциация "Аналитика"

В мае 2021 года компания ― разработчик в области решений для авиации SITA предложила систему отслеживания и управления багажом. Разработанная ею технология BagJourney позволяет управлять операциями с багажом всё большему
числу авиакомпаний[27].

Только за первые шесть месяцев 2021 года более 20 перевозчиков выбрали это решение. SITA BagJourney ― одно из основных решений, которое помогает авиационной отрасли выполнять резолюцию 753 IATA, в которой прописано требование по отслеживанию багажа на каждом этапе путешествия.

Решение SITA BagJourney используется каждый год для обработки сотен миллионов мест багажа. По данным пользователей, решение снижает число ошибок на 30%. BagJourney совместимо с различными аппаратными средствами, включая мобильные устройства для сканирования или стационарные приборы.

По словам BahamasAir, одного из пользователей решения, после его внедрения в течение 7 дней удалось осуществить процесс полного перехода на мобильные устройства для отслеживание всего багажа по двум наиболее загруженным в плане багажа направлениям ― Нассау и Майями.

По результатам шести месяцев количество жалоб на проблемы с багажом на наиболее загруженном направлении снизилось на 60%. Авиакомпания планирует внедрить решение на всех направлениях и рассчитывает, что до конца года она полностью будет соответствовать требованиям резолюции 753.

Big data и поддержание летной годности воздушных судов

Одной из таких приоритетных областей в ближайшей перспективе будут техническое обслуживание (ТО) и ремонт судов. Так, 88% респондентов аналитических исследований ожидают, что именно в этой сфере они смогут получить максимальные преимущества от применения технологий.

Техническое обслуживание и ремонт значительно опережают все прочие сферы по важности. Анализ больших данных и предиктивные ремонты в авиации демонстрируют свою эффективность и доказывают на практике, что connected technologies работают.

После ТО и ремонта респонденты ожидают преимуществ от внедрения связанных в сфере технологий пилотирования, включая оптимизацию потребления топлива и времени оборота самолётов, а также обслуживания пассажиров.

Так, в исследовании “Sky High Economics: Evaluating the Economic Benefits of Connected Airline Operations”[3] аналитики отмечают, что подключенные самолёты могут передавать данные в облако или на наземные серверы, где эти данные могут быть проанализированы с помощью инструментов Big Data Analytics.

Благодаря этому авиаперевозчики могут, например, выявлять неисправности, прежде чем они станут крупными проблемами. Полученная информация может быть использована для принятия более выверенных решений и сокращения дорогостоящего простоя самолётов (Aircraft on Ground).

Кроме того, с появлением прогнозного моделирования (predictive modelling) стала возможной замена деталей, которые на базе анализа определены как требующие замены, до того, как они вышли из строя, а именно во время плановых работ по ремонту и ТО. Всё это способствует сокращению расходов, повышает безопасность полётов.

Авиазаправка на блокчейн

В августе 2021 года «Газпромнефть-Аэро», оператор авиатопливного бизнеса «Газпром нефти», и S7 Airlines разработали и внедрили совместные смарт-контракты (Aviation fuel smart contracts, AFSC), основанные на блокчейне.

Согласно заявлению представителей «Газпром нефти», это первый для российского авиарынка опыт использования технологий распределенных реестров. С их помощью авиакомпания получила возможность моментально оплачивать топливо непосредственно при заправке в самолеты без предоплаты, банковских гарантий и финансовых рисков для участников сделки. Такой подход повышает оперативность финансовых операций и сокращает трудозатраты, считают в нефтегазовой компании.

Автоматизированная система поддержания летной годности с использованием технологий big data

В 2021 году в промышленную эксплуатацию в «Аэрофлоте» была введена автоматизированная система поддержания летной годности, технического обслуживания и ремонта воздушных судов на платформе AMOS от швейцарского вендора AMOS Swiss Aviation.

Благодаря данному проекту стало возможным отслеживание реальной картины состояния авиатранспорта. Произведена консолидация и трансформация данных из огромного числа источников, включая неформализованные данные; реализована интеграция систем ведения складского запаса; обеспечено вовлечение множества структурных подразделений; удовлетворены повышенные требования к качеству переводов для проектных нужд.

Использование AMOS существенно сократило расходы на техническое обслуживание ВС за счет таких показателей как увеличение производительности труда сотрудников соответствующих подразделений на 4%, сокращение складских запасов и оптимизация процессов планирования и материального обеспечения ТОиР.

Также необходимо отметить снижение трудозатрат при работе с системой и обеспечение автоматического формирования рабочих карт для обслуживания ТС за счет загрузки самолетной документации, совершенно другой ландшафт и организация надежной системы резервирования данных позволили существенно повысить отказоустойчивость решения, повысить качество и
оперативность формирования бухгалтерской и управленческой отчетности для предоставления регулирующим органам в области авиации.

Анализ big data для сегментации клиентов

В 2021 году системный интегратор “Техносерв” реализовал проект по созданию системы интеллектуальной сегментации клиентов для авиакомпании “Аэрофлот” на платформе IBM. Система, используя анализ Big Data и модели машинного обучения, проводит сегментацию клиентов по множеству характеристик.

В “Техносерве” подтвердили, что технологии Big Data в целом востребованы в транспортной отрасли, и подтверждением этому служит увеличение количества проектов с использованием указанных технологий. При этом тематика проектов, по ее словам, совершенно различна.

Это и задачи повышения персонализации коммуникаций с клиентами, проактивного ремонта оборудования, предсказания спроса и другие задачи, решаемые с помощью алгоритмов машинного обучения и анализа больших объемов структурированных, неструктурированных и слабоструктурированных данных[34].

Анализ и оценка маркетинговых инициатив при помощи решений big data

В мае 2021 года разработчик аналитических решений Neustar, Inc. сообщил, что авиакомпания Scandinavian Airlines выбрала его продукт для оценки и измерения влияния маркетинга на продажи[22].

Подход «Модель Маркетинг Микс» (Marketing Mix Modeling, MMM), реализуемый компанией Neustar в её решениях, даёт возможность авиакомпаниям анализировать ключевые каналы продаж и основные регионы для выбора оптимальной модели реализации своих продуктов.

Кроме того, чтобы дать Scandinavian Airlines целостное представление об их деятельности в средствах массовой информации и влияние различных драйверов на экономику компании, решение Neustar MarketShare анализирует различные ресурсы – СМИ, не относящиеся к СМИ ресурсы, данные по экономике, конкуренции, сезонности.

Лучшая работа в авиации — алекс мачерас занимается проверкой новых самолетов

Знакомьтесь, вот человек, который путешествует по миру, осуществляя поставки новых самолетов клиентам. Лондонец Алекс Мачерас, 19 лет, работает авиационным аналитиком, и в его обязанности входит пить шампанское и проверять новые самолеты — каждый салон, бизнес класс, все зоны — от люкса до места отдыха бортпроводников. В этом году он уже побывал на всех континентах, летая на самых разных самолетах.

Обеспечение авиационной безопасности с помощью искусственного интеллекта и big data

В 2021 году британский авиаперевозчик Virgin Atlantic сообщил, что он планирует внедрить в свою работу программы британской компании Osprey[21]. Речь идёт о системе Flight Risk Assessment System, которая использует технологии искусственного интеллекта (AI) и машинного обучения (Machine Learning) для обработки больших массивов данных с целью повышения эффективности и надёжности авиационных операций.

Система собирает данные из более чем 200.000 источников на 60 различных языках. Затем эти данные передаются в БД, которая содержит информацию по 380.000 событий в области авиационной безопасности и надёжности. Данные собираются из открытых источников, таких как сообщения в СМИ, из социальных сетей и с отраслевых веб-сайтов.

Дополнительный анализ:  Data Science «на пальцах». Статистика — это наука менять свой взгляд на вещи в условиях неопределенности / Блог компании SkillFactory / Хабр

Система Osprey обеспечивает быстрое реагирование на угрозы и долгосрочный анализ данных для идентификации и купирования причин этих угроз. Цель системы ― обеспечить участников авиационной отрасли необходимой для принятия верных решений информацией в части обеспечения безопасности полётов.

Система Osprey делит земной шар на блоки, не ограниченные границами стран или границами Flight Information Region. Эти блоки динамически обновляются. К информации по рейсам в этих блоках могут быть добавлены и другие наборы данных, такие как высота местности и плотность населения. Благодаря этому можно определить существующие или формирующиеся тенденции.

Оснащение самолетов авиакомпании “победа” rfid-метками

Авиакомпания «Победа» реализовал первый в мире проект оснащения самолетов RFID-метками, в рамках которого на всем аварийно-спасательном оборудовании каждого борта устанавливаются радиометки, считываемые при помощи планшетного компьютера.

Цель проекта – ускорить инвентаризацию аварийно-спасательного оборудования, которая происходит после каждого полета. Один из бортпроводников запускает на планшете специальное приложение и проходит по салону, сканируя RFID-метки. Каждая обнаруженная метка отзывается коротким звуковым сигналом, и в конце приложение генерирует отчет о наличии всего аварийно-спасательного оборудования.

Если же какого-то оборудования нет, это сразу же видно в отчете, соответственно, в этом случае не дается команда на отправление перронных автобусов с пассажирами и происходит их проверка.

Без оборудования самолет нельзя допустить к следующему рейсу (то есть, если на борту не хватает спасательного жилета — значит, одному из пассажиров будет отказано в перевозке). Ручная же инвентаризация отнимает гораздо больше времени и сил: одних только жилетов под креслами — 189 штук, и их надо все проверить.

Таким образом, благодаря RFID-технологии «Победе» удалось сократить минимальное время оборота воздушного судна с 30 до 25 минут. Это один из ключевых KPI в пассажирской авиации: смысл в том, что чем меньше времени проходит от прилета в аэропорт до вылета следующим рейсом, тем выше экономическая эффективность авиакомпании, так как самолет приносит доход только когда он летает, а не стоит на земле.

Применение big data для анализа и прогнозирования спроса на авиаперевозки

Юго-Восточная Азия может считаться достаточно сильным игроком в области предиктивной аналитики спроса на авиаперевозки.

Так, в декабре 2021 года авиакомпания Philippine Airlines выбрала решение компании PROS для оптимизации глобальной стратегии в области управления доходами (Global Revenue Strategies)[13]. Облачное решение PROS Origin &

Philippine Airlines является национальным авиаперевозчиком на Филиппинах. Самолёты компании на февраль 2021 года летают по 30 местным и 43 международным направлениям. Компания эксплуатирует 79 воздушных судов ― Boeing 777-300ER, Airbus A340, A330, A321, Bombardier Q400 и Q300.

Разработчик в области технологий для авиации Sabre Corporation, разработчик решений для мировой туристической отрасли, сообщил в ноябре 2021 года о подписании многолетнего соглашения, согласно которому авиакомпания Hong Kong Airlines получит Big Data-решение MIDT (Market Information Data Tapes)[14].

Данное решение представляет собой базу данных, обеспечивающую доступ к историческим и прогнозным (глубина до 11 месяцев) данным по бронированиям. Обладание этим продуктом позволяет авиакомпаниям анализировать влияние от мер в области формирования тарифов, маркетинговых программ.

Hong Kong Airlines рассчитывает использовать продукт при реализации планов по началу работы на рынке Северной Америки. Продукт позволяет формировать отчёты и обладает аналитическим функционалом, что даёт пользователю возможность выявлять оптимальные каналы для реализации маркетинговой стратегии.

Примеры сокращения расходов топлива и выбросов при переходе к технологиям big data

В 2021 году американская авиакомпания Southwest Airlines решила протестировать аналитическую платформу, которая позволяла сократить вторую по величине статью затрат ― расходы на топливо, составляющие от 4 до 6 млрд. долларов ежегодно[10].

Изначально прогнозирование затрат на топливо в Southwest Airlines осуществлялось на базе информации из нескольких систем, включая Ariba, среду управления расходом топлива Allegro, а также из собственного корпоративного хранилища исторических данных компании.

Все эти данные сводились затем в одну громоздкую таблицу. Специалисты ежемесячно генерировали 1.200 прогнозов потребности в топливе. Финансовый аналитик тратил в месяц три дня работы на составление этих прогнозов, которые, кроме того, не отвечали требованиям компании в части точности.

В пилотном проекте была использована платформа Alteryx Designer. Она помогла построить 8 различных прогнозных моделей, которые включали функцию моделирования регрессии временного ряда и нейронные сети. Для каждого месяца и каждого аэропорта система могла генерировать 9.600 прогнозов.

Время обработки данных для составления прогнозов удалось сократить на 60%. Кроме того, была повышена точность прогноза. Проект помог Southwest Airlines выяснить, что приобретение топлива у одного поставщика обеспечит большую выгоду, чем у нескольких, как это практиковалось ранее. Скорость составления прогнозов удалось снизить с 3 дней до 5 минут.

Датская авиакомпания Thomas Cook Airlines Scandinavia, оказывающая услуги чартерных перевозок, выбрала в мае 2021 года решение GoDirect Fuel Efficiency разработки Honeywell для повышения эффективности использования топлива и сокращения вредных выбросов[11]. ПО обеспечивает удовлетворение требований ЕС по нормам выбросов вредных веществ.

Комплексное решение GoDirect, включающее в себя ряд сервисов и приложений, обеспечивает операторов, экипажи судов и ремонтные команды программным обеспечением для управления большими объёмами данных и аналитическим инструментарием для повышения эффективности работы самолёта.

Эффективность применения данного решения для экономии топлива отличается в зависимости от моделей самолётов и авиакомпаний, однако существующие клиенты говорят об ежегодной экономии до 5%. Для крупных авиакомпаний с большим парком судов это соответствует экономии десятков миллионов долларов ежегодно.

На февраль 2021 года ПО GoDirect Fuel Efficiency уже используется на всех судах группы Thomas Cook.

Прогнозирование задержек рейсов с помощью big data

В апреле 2021 года венчурное подразделение авиакомпании JetBlue Airlines, американского лоукостера, инвестировало средства в стартап Lumo (прошлое название FlightSayer)[12]. По словам руководства, стартапа, компания способна прогнозировать задержки рейсов за несколько часов и даже несколько дней до вылета.

Решение компании строится на технологиях в области искусственного интеллекта. Пользователи могут проверить точность работы решения Lumo бесплатно в онлайн-режиме. Для этого они должны ввести на сайте стартапа дату полёта, номер рейса и название авиакомпании.

После этого пользователи получат прогноз с указанием длительности возможной задержки. Использование решения Lumo позволяет авиакомпаниям и туристическим агентствам перебронировать билеты пассажиров, сохраняя тем самым их лояльность, а также предотвращая кризисные ситуации в аэропортах, возникающие при задержках вылетов.

Среди возможных проблем при реализации решения эксперты выделяют, в первую очередь, наличие на рынке конкурирующих решений от крупных игроков, а также недостаточную интеграцию с системами туристических компаний. Что касается конкурирующих решений, то эксперты называют SITA FlightPredictor (в апреле 2021 года руководство SITA анонсировало появление стартовой версии решения к концу лета 2021 года); предлагаемую с 2021 так называемую Schedule Recovery System от Amadeus, первым пользователем которой стал Qantas; программу Google (с ноября 2021 года, рассчитана на пассажиров). Ряд стартапов также предлагает аналогичные программы, например, Freebird из Кембриджа.

При презентации решения стартап указывал, что весной 2021 года должен быть реализован пилот с крупным международным авиаперевозчиком. Однако, какой-либо дополнительной информации по этой теме опубликовано не было.

Работа: аналитик гражданской авиации в москве — июль 2021 – 11 вакансий |

Ремонт и техническое обслуживание с использованием больших данных

Британский лоукостер EasyJet, эксплуатант самолётов Airbus A319, планирует внедрить около 50 различных алгоритмов для предиктивного ТО и ремонта на борту своих судов. Техническое руководство компании заявило в середине июня 2021 года, что работы на всём авиапарке должны быть завершены к концу 2021 года[6].

Дополнительный анализ:  Финансы :: Новости :: РБК

Для реализации модели прогнозного ремонта и ТО будут задействованы два решения ― бортовая система обмена данными по полётным операциям и ТО (FOMAX) и внебортовой инструментарий для анализа авиационных данных Skywise. FOMAX, сервер от Rockwell Collins, собирает данные по ТО и производительности самолёта, в автоматическом режиме отправляет их инженерам и техникам.

Система FOMAX получает все данные из расположенной на борту системы FDIMU (flight data interface management unit). FOMAX имеет функционал 4G-маршрутизатора: после приземления судна все данные с помощью 4G Gatelink-антенн передаются на аналитическую платформу Skywise и анализируются специалистами Airbus.

Для анализа специалисты Airbus самостоятельно разработали специальные модели, способные прогнозировать возникновение системных неполадок. После проведённого анализа его результаты переправляются специалистам EasyJet, которые уже самостоятельно принимают решения о необходимости проведения предиктивного ТО или ремонта.

Самолёты модели A320 с FOMAX способны собирать более 24.000 параметров, то есть обеспечивать 100%-й сбор информации с систем и компонентов самолётов. Самолёты без FOMAX собирают 400 параметров, то есть 2% от доступной информации.

Между тем, авиакомпания Delta Air Lines сообщила в апреле 2021 года, что она планирует адаптировать свою систему технического обслуживания с предиктивным функционалом под самолёты последнего поколения, которые генерируют значительно большие объёмы данных, чем предыдущие суда (авиакомпания готовится к приёму очередных моделей самолётов, таких как Airbus A350 и Bombardier CS100)[7].

Согласно заявлениям руководства Delta, используемая программа прогнозного ТО помогает авиакомпании значительно снизить число сбоев в работе: За последние 12 месяцев использование проактивного ТО помогло избежать 1.200 задержек с вылетом или отмен рейсов.

Программа использует данные, поступающие из различных систем, таких как, например, Aircraft Health Management от Boeing, от систем Airbus и GE. При этом, основу парка самолётов авиакомпании составляют самолёты, которые были разработаны ещё до того момента, как извлечение и анализ данных стали “must-have”-функцией.

После анализа полученных данных программа вырабатывает рекомендации по замене деталей и механизмов. По данным специалистов Delta Air Lines, используемая программа демонстрирует 95%-й уровень точности в части рекомендаций по необходимости замены деталей.

Компания Honeywell в мае 2021 года совместно с Cathay Pacific протестировала использование решений Big Data Analytics на самолётах гонконгского авиаперевозчика[8]. Протестированное решение ― GoDirect Maintenance Service ― ориентировано на использование методов прогнозного анализа в части технического обслуживания воздушных судов.

Cathay Pacific предоставил для тестирования решения свои самолёты A330. Данные с оборудования самолётов передавались по существующим каналам в подразделения авиакомпании, а также провайдерам, оказывающим услуги ТО. Благодаря этому, обслуживающий персонал на земле мог заранее подготовиться к потенциальным работам по ТО и также заранее заказать запасные части, не дожидаясь наступления критической ситуации.

В ходе тестирования удалось снизить количество поломок оборудования самолёта на 35%, что позволило снизить затраты на ТО, сократить количество задержек вылета и время простоя самолётов. Точность предсказания поломок составила 99%, заявило руководство Honeywell.

В июне 2021 года компании заключили соглашение на внедрение решения GoDirect Connected Maintenance, использующего Big Data и сенсоры для прогнозирования неисправностей, на всех самолётах Airbus A330 авиаперевозчика. Согласно контракту, системы GoDirect Connected Maintenance будут установлены на более чем 60 самолётах Cathay Pacific.

Восточные соседи также не остаются в стороне. Осенью 2021 года компания Korean Air начала использовать технологии на базе искусственного интеллекта для поддержки специалистов, проводящих ТО[9]:

Korean Air использует технологию машинного обучения (Machine Learning) для обработки больших массивов данных, которые генерируются судами компании. Решение опирается на платформу Watson от IBM на основе искусственного интеллекта и способно читать прошлые записи, касающиеся ТО, составленные на естественном языке (natural language), а также обрабатывать данные, поступающие от самого самолёта и технических специалистов.

Для решения подобных задач Korean Air использует технологию контентного анализа на базе WatsonExplorer и Natural Language Understanding (NLU), что помогает обрабатывать структурированные и неструктурированные данные. Это позволяет сократить время, требуемое для определения причин возможной неисправности в будущем или существующей проблемы на 90% по сравнению с традиционно используемыми методами.

Создание центра инноваций в области гражданской авиации для укрепления экспертизы в области big data

В 2021 г. Компания «Иннодата», российский разработчик программного обеспечения в области инновационных технологий, и российский ИТ-университет «Иннополис» создали Центр Инноваций в Гражданской Авиации (ЦИГА). Цель объединения ― развитие технологического и цифрового присутствия в современной гражданской авиации, способствование раскрытию сути и значения современных технологий, влияющих на спрос и предложение для игроков авиаотрасли, интеграция инноваций цифрового мира в текущие технологии гражданской авиации.

Основные направления деятельности – это развитие существующих и создание новых решений для авиаотрасли, соответственно. Центр ведет как образовательную деятельность, так и проектную, будь то реализация проектов в научно-технической, инновационной или информационно-аналитической плоскости.

Центр ведет работу в области решения таких задач, как разработка и внедрение технологий дополненной и виртуальной реальности для борьбы с аэрофобией, навигация в аэропорту на основе технологий виртуальной реальности, поведенческий анализ активностей сотрудников в информационном поле, предсказание покупательной способности пассажиров и формирование динамических рекомендаций по изменению стоимости билетов, планирование расписания полетов и анализ оптимизации сезонного расписания, предиктивное управление пассажиропотоком, управление персоналом в аэропортах, разработка системы подбора персональных пакетных предложений услуг авиакомпании и партнеров, а также методики сканирования поверхности воздушных судов во время послеполетного технического обслуживания, анализ взлетно-посадочной полосы, управление уровнем overbooking, анализ интересов пассажиров и формирование предложений для них.[36][37][38]

Чат-боты

Аналитическая компания MarketsandMarkets опубликовала в мае 2021 года прогноз рынка чат-ботов[5]. Согласно данным аналитиков, среднегодовые темпы роста рынка между 2021 и 2021 годом составят 35.2%.

В денежном выражении рынок вырастет с 703.3 млн. долларов в 2021 году до 3.172 млрд. долларов в 2021 году. Основной целью внедрения чат-ботов в авиационной отрасли является желание компаний лучше понять поведение потребителей их услуг и товаров.

Кроме того, Big Data-решения начинают использовать в авиационной отрасли и для решения других задач, например, для обеспечения авиационной безопасности на базе анализа массивов исторических данных или, например, что перекликается с повышением уровня клиентского обслуживания, для оптимизации процессов, связанных с организацией питания на борту, и отслеживания багажа.

Заключение

Примеры, рассмотренные выше, показывают, что авиакомпании ― уже не просто воздушные суда, перевозчики, к которым мы успели привыкнуть. Важная основа их развития ― технологии больших данных, которые делают возможной, например, персонализацию услуг.

Индивидуальные предложения, которые делают поездку каждого пассажира максимально комфортной. Поиск информации о путешествии, заказ билетов, поисковые запросы – любые действия в сети оставляют цифровые следы, которые могут быть проанализированы для формирования максимально точечного пакета услуг.

Еще больше данных генерируют производственные системы. Самолеты, железнодорожные локомотивы и поезда являются источником огромного потока технических данных, которые поступают с датчиков, установленных в двигателях и системах жизнеобеспечения. Детальный анализ этих данных позволяет выявлять и предсказывать необходимость ремонта той или иной запчасти.

Таким образом, большие данные позволяют повысить уровень безопасности, а также сэкономить значительные средства для перевозчиков. Сокращается необходимое время на ремонт и самолет может использоваться по прямому назначению в течение более длительного срока.

Предлагаемый материал затронул некоторые из возможностей и практических результатов использования технологий Big Data в авиационной отрасли, в реальности же таких возможностей для развития с каждым днем становится все больше.

Оцените статью
Аналитик-эксперт
Добавить комментарий

Adblock
detector