Business Intelligence – что это такое и зачем он нужен? Система бизнес-анализа

Business Intelligence - что это такое и зачем он нужен? Система бизнес-анализа Аналитика

Что такое bi?

Итак, что же такое BI система? Если в трех словах, то это продвинутая система отчетности. Что-бы было более понятно, ниже перечислю список основных функций, которыми располагают современные системы класса BI:

  • возможность подключения к различным источникам данных (от файла Excel до универсального ODBC подключения)
  • возможность построения как простых отчетов (типа график или таблица), так и сложных параметризированных отчетов с комбинированной структурой и ссылочными связями (Drill-Trough, Drill-Up/Drill-Down)
  • возможность прозрачной работы с разными источниками данных (например, Excel и SQL Server) с полноценной обработкой связей между ними
  • возможность интерактивной работы с данными (формирование отчетов «на лету»)
  • возможность представления реляционных данных как многомерные
  • возможность распределения прав доступа используя как внутренние источники аутентификации, так и внешние (NTLM, LDAP и т. д.)
  • возможность запуска формирования отчетов как вручную, так и автоматически по расписанию
  • возможность автоматической рассылки сформированных отчетов
  • возможность построения отчетов в различных форматах (Excel, HTML, PDF и т. д.)

Говоря простым русским языком, BI система – это такая программа, которая предоставляет пользователю удобные инструменты анализа фактически любых данных (будь то файл Excel либо промышленное хранилище данных).

Data storytelling

Одним из главных трендов, который был выделен исследованием Dresner – это data storytelling. Чтобы человек лучше запомнил и воспринял суть информации и сообщения, он должен пережить опыт. Наблюдая за развитием ситуации в реальном времени, мы невольно попадаем в раскрытие какой-либо истории.

Похожая ситуация наблюдается и с данными – если мы хотим донести важные сведения, мы должны сконцентрировать все внимание пользователя на них. Именно поэтому в интерактивных презентациях и BI системах мы все чаще встречаемся с визуальными анимированными эффектами, которые фокусируют взгляд на нужной информации.

Рис. 19. Фокусирование внимания пользователя на данных с помощью анимации
Рис. 19. Фокусирование внимания пользователя на данных с помощью анимации

С помощью сторителлинга можно подавать большие объемы информации просто и доступно. Если в обычной презентации специалист, взглянув на большой объем данных, не сразу сможет разобраться во показанных вводных, то при использовании сторителлинга мы сразу и наглядно демонстрируем, откуда берутся данные, какие выводы можно сделать из разных массивов.

Рис.20. Феномен data storytelling 
Рис.20. Феномен data storytelling 

Кроме того, аналитика, как правило, требует погружения в определенную ситуацию, а с помощью таких инструментов как сторителлинг мы ускоряем этот процесс, а, значит, и процесс принятия решений.

Возможность сторителлинга в BI-системах больше всего ценится среди отделов маркетинга и продаж, а также эта функция важна для презентации отчетности финансовым аналитикам, совету директоров или топ-менеджменту.

Наш BI-инструмент ориентирован на использование руководителем компании для бизнес-аналитики, маркетингового и конкурентного анализа, на презентацию финансовой отчетности топ-менеджменту или совету директоров, и в нем мы объединили тренды и технологии.

Рис.21. Уникальные черты и roadmap разработанной кроссплатформенной BI-системы в нашем проекте
Рис.21. Уникальные черты и roadmap разработанной кроссплатформенной BI-системы в нашем проекте

Бизнес-анализ

Что подразумевается под этим понятием? Бизнес-анализ представляет собой продуманный процесс, позволяющий специалистам превращать поступающие данные в определенную информацию, необходимую для увеличения эффективности деятельности предприятия и роста его конкурентоспособности.

Бизнес-аналитика осуществляется по принципам бизнес-анализа и состоит из нескольких взаимосвязанных между собой процессов. В их число входит:

  • data mining – интеллектуальная обработка данных;
  • online analytical processing – анализ, проводимый в режиме реального времени;
  • guerying – получение информации с использованием специальных баз данных;
  • reporting – составление отчетов.

Бизнес-анализ используется компаниями для того, чтобы принимать обоснованные решения, сокращать издержки и заниматься поисками новых перспектив деятельности. BI-технологии представляют собой понятие более широкое, чем традиционная корпоративная отчетность.

Значительно выше их уровень и в сравнении с обычным набором инструментов, используемым для получения данных о работе предприятия. Именно поэтому бизнес-аналитика широко применяется IT-директорами для выявления неэффективных процессов, полностью созревших для перестройки.

Визуализация данных (data visualization, dataviz)

Наше потребление информации становится больше визуальным – во всем информационном шуме мы неосознанно обращаем больше внимания на изображения и видео, иногда пролистываем большие тексты. 

Рис. 14. Визуальное потребление информации 
Рис. 14. Визуальное потребление информации 

Именно поэтому и существует визуализация данных (Data Visualization) – ряд инструментов наподобие графиков, таблиц, диаграмм и схем, которые представляют информацию наглядно. 

Рис.15. Инструментарий DataViz
Рис.15. Инструментарий DataViz

Донести информацию с помощью инфографики намного проще и быстрее, чем с помощью текста, но мы хотели бы отметить, что и здесь есть простор для развития, а именно – уход в 3D. 

Мы все привыкли к 2D-инфографикам, и, да, они прекрасно справляются со своей задачей, но информацию можно донести и более эффективными способами. Во многих случаях 3D-визуализации позволяют передать больше информации об объекте.

Рис.16. Преимущества 3D-визуализации
Рис.16. Преимущества 3D-визуализации

Мы считаем, что 3D визуализация данных – это не просто тренд, а необходимость для некоторых сфер (AEC, например). Для девелопера на рынке российской недвижимости мы разработали BI-систему аналитики с 3D визуализацией данных, которая намного более эффективна благодаря интерактивности и наглядной демонстрации данных на карте.

Рис.17. Пример 3D визуализации данных на карте для визуализации данных в проекте
Рис.17. Пример 3D визуализации данных на карте для визуализации данных в проекте

3D в BI-системах может использоваться и для визуализации объектов – например, BIM-модели зданий помогают быстро получать нужную аналитику и информацию о строительном объекте.

Рис.18. Пример интерактивных BIM-моделей зданий 
Рис.18. Пример интерактивных BIM-моделей зданий 

Мы идем к тому, что BI-системы могут интегрировать в себе намного больше инструментов для аналитики и совместной работы, и становятся единым приложением со всеми данными о компании, от документации до последних показателей эффективности и статистики продаж.

Внедрение аналитических систем

Руководители большинства крупных компаний придерживаются единого мнения о пользе применения Business Intelligence. Ведь такие системы на сегодняшний день считаются одним из самых перспективных направлений ИТ-технологий. Тем не менее внедрение подобного ПО нередко затрудняют технические и психологические преграды, а также неслаженные действия менеджеров и отсутствие у сотрудников конкретных сфер ответственности.

При решении внедрить в компании BI-систему важно понимать то, что успех проекта во многом будет определен отношением работников к нововведению. Подобное касается всех ИТ-продуктов. Скептическое отношение к ним, а также страх сотрудников перед сокращением порой сводят на нет все усилия руководства.

До начала внедрения технологии рекомендуется прохождение сотрудниками курсов Business Intelligence. Это позволит им в дальнейшем успешно справляться с работой в аналитической программе. Помимо этого, понадобится проведение тщательного анализа тех бизнес-процессов, которые протекают в компании, а также принципов, которым следует руководство при принятии управленческих решений.

Выбор определенной бизнес-аналитической системы во многом будет зависеть от:

  • задачи и цели ее внедрения;
  • требований к хранению данных и возможности ими оперировать;
  • широты функции интеграции данных;
  • возможности визуализации информации;
  • требуемой универсальности или узкой специализации;
  • цены программного продукта.

Рассмотрение вышеперечисленных критериев позволяет руководству компании сделать свой выбор из огромного многообразия существующего ПО, созданного для бизнес-аналитики.

Зачем это нужно

Разберемся, зачем анализировать бизнес-процессы с помощью Process Intelligence?

Любой бизнес стремится эффективно использовать технологические решения, чтобы получить конкурентные преимущества. Все крупные компании так или иначе автоматизируют отдельные задачи с помощью искусственного интеллекта, цифровых двойников, роботов и т.д.

Например, компьютерное зрение используют, чтобы переводить документы в электронный вид, определять тип данных и затем отправлять их в нужную базу, обработку естественного языка (NLP) – чтобы анализировать содержание текста и выделять из него нужные сущности и факты, RPA – чтобы воспроизводить пользовательские операции: перемещать файлы в целевые системы, отправлять автоответы, открывать программы и т.п.

В любых технологических проектах важна последовательность. Прежде чем внедрить какое-то решение, надо четко понять:

  • как все работает в настоящий момент?
  • куда конкретно будет встраиваться технология?
  • какую задачу или задачи она будет выполнять?
  • а может быть, автоматизация пока не нужна, а достаточно перестроить и упростить последовательность действий?


Есть три метода, как найти ответы на эти вопросы.

Первый – опросить сотрудников и записать, как они представляют себе процесс. Но все не так просто. Во-первых, руководители видят общую картину и не знают каких-то деталей и мелочей, которые часто имеют важное значение в критических ситуациях.

Во-вторых, исполнители и специалисты могут ошибаться в последовательности этапов или скрывать что-то, например, присутствие наблюдателя меняет поведение сотрудников и они зачастую хотят придать большую значимость своей работе. В-третьих, в зависимости от сложности процесса разные специалисты могут выполнять задачу по-разному. Таким образом, при этом подходе компания рискует получить субъективную и противоречивую картину:

Дополнительный анализ:  Студия аналитики на TI4 – худшая и лучшая одновременно. Шутили про геев, смотрели видосики на ютубе и матерились - Чернышевщина - Блоги -

Второй путь

– обратиться к консалтерам, чтобы они помогли реинжинирить процессы. Бизнес-консультанты более объективно смотрят на компанию и могут обнаружить неочевидные проблемы. Кстати, многие современные консалтинговые фирмы используют решения Process Intelligence.

Для них это дополнительный инструмент, чтобы быстрее изучить бизнес-процессы заказчика и получить больше полезной информации. Как правило, реинжиниринг процесса требует больших трудозатрат на поиск и решение проблемы. По нашей оценке, на такой анализ бизнес-процессов в компании может уйти от 6 до 8 месяцев, при этом применение платформы ABBYY Timeline позволяет сделать это быстрее.

Однако любой проект по оптимизации – конечный. Консалтеры и сотрудники находят участок процесса, реализуют проект, считают результаты, и после этого расходятся и – вот, печаль! – забирают с собой решение, с помощью которого делали анализ.

Третий путь – при реинжиниринге процессов полагаться на цифровые следы, которые остаются в корпоративных источниках. В логах информационных систем постоянно накапливается информация. Если правильно воспользоваться этими данными, то можно узнать о своей компании много нового.

Аналитики Forrester называют такую концепцию Digital Intelligence (цифровой интеллект). Это уровень цифровой зрелости организаций, которые широко используют цифровые данные, чтобы анализировать процессы и развивать бизнес. Например, для этого берут метаданные (какой сотрудник, когда и за сколько времени выполнил задачу, закрыл заявку и т.д.) и с помощью современных инструментов связывают эти «цифровые следы» с тем, почему были сделаны конкретно те или иные шаги в процессе.

Таким образом можно смотреть и на работу каждого сотрудника в отдельности – это тоже один из способов применения Process Intelligence. Один подчиненный будет работать медленнее другого и выполнять меньше задач за рабочий день. Что это значит? Важно посмотреть, что за заявки они обрабатывают и какие характеристики у этих документов?

Применение Process Intelligence делает эксперта не зависимым от внешних факторов. Этот инструмент может пригодиться в ежедневной работе бизнес-аналитиков, консультантов и руководителей подразделений.

Изучить, как движется процесс

Запрос

– это способ обнаружить процессы, в которых выполняется интересующая компанию определённая последовательность действий (паттерн). Таким образом можно проверить различные закономерности, например, как часто менеджер с большим опозданием отвечает на заявку от клиента. Запрос можно задать и гибко, и жестко (как строгое следование этапов один за другим).

Приведем пример из страховой области. С помощью запроса можно, например, отследить случаи, когда после ДТП клиенту выдавали подменный автомобиль, хотя в страховом полисе такая опция не была предусмотрена. Чтобы найти процессы, которые соответствуют такой ситуации, эксперт компании строит запрос:

На скриншоте видно, что клиенту выдали подменный автомобиль, а потом страховая подтвердила отказ по убытку. Как мы видим, клиенту потребовалось больше 4 дней, чтобы вернуть машину. Это понятно: зачем ему торопиться, когда можно ездить на прокатном авто за счет страховой.

Таким образом, в ABBYY Timeline можно проконтролировать процессы, где не выполнен обязательный шаг, например, специалист не подтвердил страховое покрытие. То есть по запросу в итоге можно найти такие процессы, где нарушена одна из процедур.

Регламент – это еще один инструмент для поиска нарушения процедур. В нем есть возможность строго определить последовательность событий, значения атрибутов, длительность этапов и др.:

Инструмент позволяет выявить те процессы, которые не соответствуют заданному регламенту, и определить характер нарушений (а не просто процессы, которые в целом не соответствуют паттерну). ABBYY Timeline позволяет выявить нарушения таких типов:

  • несоблюдение сроков,
  • пропущенный этап,
  • неправильная позиция,
  • неверное количество повторений конкретного шага.

В системе можно посмотреть, сколько таких нарушений было и в каком количестве «путей» они встречались. Можно отфильтровать все события, где происходили нарушения, допустим, оценка ущерба была подтверждена не вовремя. Затем на любое нарушение можно назначить нотификацию: когда оно будет случаться, человек или робот будет получать уведомление.

Чем полезен инструмент «Регламент» в ABBYY Timeline? Большинство Process Intelligence-систем мотивируют менеджера создать идеальную схему и переделать или проигнорировать те процессы, которые не соответствуют ей. Но менеджера должна волновать причина отклонения от регламента, потому что не все нарушения являются существенными. Оценивая регламент, менеджер сам принимает решение: реагировать ли на нарушение или нет.

Разберем еще один инструмент – «Анализ сроков». С помощью ML-моделей, обученных на исторических данных о процессе, можно следить за соблюдением времени, которое проходит между двумя событиями. Он позволяет прогнозировать, какие из текущих процессов или их этапов не уложатся в срок.

«Анализ сроков» позволяет задать условие, что, например, «до 16:00 должны быть оплачены все счета, которые поступили сегодня». Можно выбрать несколько событий, с которых начинается период отслеживания нового интервала, и несколько событий, которыми он должен завершиться.

Приведем пример из медицины. Если пациент получает какие-то услуги в частной клинике, необходимо фиксировать все исследования и отслеживать процесс лечения, в частности, чтобы, основываясь на исторических данных и обученной модели, спрогнозировать, будут ли медицинские анализы выполнены в срок, необходимый для своевременного выставления счета для страховой компании.

Business Intelligence - что это такое и зачем он нужен? Система бизнес-анализа
Согласно историческим данным, 11% медицинских анализов не были выполнены в срок.

Как выглядит работа process intelligence


Вся масса данных, которая будет обрабатываться, поступает в ABBYY Timeline с помощью понятных и знакомых многим инструментов для извлечения и обработки контента.

Необходимость ETL («extract, transform, load», или дословно «извлечение, преобразование, загрузка») связана с разнообразием источников, в которых хранятся данные. Например, информация для анализа поступает из ERP, CRM, систем веб-аналитики и других.

В интерфейсе ABBYY Timeline журнал событий выглядит так (здесь и далее скриншоты кликабельны):

Эти данные можно дополнить, подготовить, очистить и т.п., чтобы использовать ETL более эффективно. Например, можно добавить даты, округлить метку времени до заданных единиц (минуты, секунды), удалить дублирующие записи, объединить в один датасет данные из нескольких систем по общему ключу и выстроить последовательность операций по преобразованию данных, которая выполняется при загрузке в реальном времени.

Также каждому из событий (то есть этапов процесса) можно присвоить необходимые параметры (атрибуты), которые помогают провести более глубокую аналитику. Атрибуты – это структурированные данные, внесенные из документов в информационные системы вручную или с помощью OCR и NLP.

Например, это может быть сумма кредита, возраст клиента или имя и фамилия менеджера, если речь идет о банке; регион, тип страхования или день недели, если мы говорим о страховой компании. Таким образом, при анализе бизнес-процесса можно выбрать среди всех загруженных значений атрибута одно или несколько, например, 3 региона из 23:

Любая Process Intelligence система – это платформа с множеством различных метрик: индикаторов, цифр и графиков, которые обновляются в реальном времени. Например, наша ABBYY Timeline – это не просто дашборд, в котором приглашенный консультант однажды настроил десяток метрик, которые вы будете проверять раз в месяц.

Анализ после внедрения: на дашборде можно увидеть изменение бизнес-показателей за конкретный срок, в данном случае за несколько месяцев. Так, например, страховая компания может понять, насколько эффективной была автоматизация процесса по проверке категорий риска с помощью программных роботов.

ABBYY Timeline – это полноценный инструмент бизнес-аналитика. Он может быть сотрудником организации, которая приобрела лицензию, а не дорогим наемным консультантом. Приведем в пример стартовый экран платформы:

Используя стартовый экран, можно проводить верхнеуровневую аналитику: кликнуть на каждый средний показатель, посмотреть на гистограмме распределение по количеству экземпляров процессов и как это распределение меняется для каждого атрибута (день недели, менеджер, регион и т.д.).

Рассмотрим, как можно использовать стартовый экран на примере процесса по урегулированию страхового случая. На стартовом экране выше видим распределение первых и последних событий в процессе: в большинстве случаев (89%) первое событие – уведомление о страховом случае.

Последнее событие – заявка закрыта – происходит в 84% случаев. Иногда информации со стартового экрана достаточно, чтобы понять, что у вас битые данные. Допустим, если в качестве первого события указано «заявка закрыта», то на вход явно поступили некорректные данные.

Кратко о bi-системах и их преимуществах

BI-системы используются в большинстве сфер, поэтому этот термин широко известен в бизнес-сообществе. На пользовательском уровне BI-системы – это программное обеспечение, которое помогает работать с данными, анализировать и обрабатывать большие объемы информации.

Рис.1. Преобразование данных в аналитику в BI-системах
Рис.1. Преобразование данных в аналитику в BI-системах

BI-системы собирают всю информацию в одном месте для удобной аналитики и помогают выявлять закономерности и тренды. Загружая в BI-систему данные о рынке мы получаем более полное представление о ситуации, а, значит, и лучшую аналитику. 

Дополнительный анализ:  Гештальт-терапия – мифы и реальность | Вовремя
Рис 2. Для каких задач внедряют BI-системы 
Рис 2. Для каких задач внедряют BI-системы 

Внедрение такого ПО, кстати, совсем не требует усилий, так как оно дополняет существующие инструменты. Аналитика становится простой и быстрой, так как для получения анализа BI-система сама собирает все данные о нужных показателях из множества источников и предоставляет информацию для анализа.

Рис 3. Преимущества BI-систем
Рис 3. Преимущества BI-систем

Плюсы BI-систем для бизнеса уже давно известны, все больше компаний внедряют подобные инструменты не только для финансовой аналитики, но и маркетингового и рыночного анализа. 

Рис.4. Объем рынка BI-систем
Рис.4. Объем рынка BI-систем

Расширяются границы их применения для стратегического и тактического планирования.

Рис 5. BI-системы как часть бизнеса 
Рис 5. BI-системы как часть бизнеса 

Внедрение BI-систем становится все более нужным и прибыльным для компаний.

Рис 6. Эффекты от внедрения BI-систем для компаний
Рис 6. Эффекты от внедрения BI-систем для компаний

Рынок BI-систем развивается в сторону кроссплатформенности и внедрения новых подходов к аналитике. Именно поэтому важно понимать, какие тренды сейчас есть. 

Определить, как будет развиваться процесс


Инструмент

«Прогноз»

, основываясь на исторических данных, помогает предсказывать исход процессов, которые еще не завершились. Приведем в пример прогнозирование количества свободных палат в больнице. Допустим, пациент приехал на обследование после 16:00, посетил трех врачей.

Последний из них обнаружил, что необходимо еще одно обследование. По историческим данным можно определить, что были процессы, которые развивались по похожему сценарию и с определенной вероятностью приводили к тому, что человек оставался в больнице до утра.

Что делать с этой информацией? На основе спрогнозированного исхода процесса, выраженного в наступлении определенного события, ABBYY Timeline позволяет настроить вызов внешнего сервиса – например, создать автоматизированную заявку в системе с помощью робота.

Business Intelligence - что это такое и зачем он нужен? Система бизнес-анализа
По данному прогнозу, пациента с вероятностью 77% отпустят домой. Значит, за ним можно не резервировать палату.

Оценить, где нужны роботы

С помощью ABBYY Timeline можно проанализировать процессы и обнаружить в них повторяющиеся действия, которые можно затем автоматизировать с помощью технологий, включая роботов (RPA). Программные роботы – один из ведущих технологических трендов последних лет.

Расскажем, как выявить процессы, которые можно отдать программным роботам, и обосновать использование RPA с помощью ABBYY Timeline.

1). Сделав discovery процесса, вы получаете черновик визуального скрипта для RPA. Process Discovery – это та самая картина процесса. Она в дальнейшем позволяет найти проблемные точки, используя измеримые показатели, и оптимизировать процесс с помощью более 25 аналитических инструментов.

Обратимся снова к уже ранее рассмотренному скриншоту «Пути». Как вы видите, самый первый путь наиболее частотный, стройный, с понятными и предсказуемыми шагами. Этот путь – первый кандидат на автоматизацию, а его схема – это и есть тот самый черновик визуального скрипта для RPA.

Остальные пути совсем другие. Почему? Например, счета, на которых стоят отметки ручкой или штампы поверх сумм и дат, уходят на дополнительный контроль качества распознавания. Другой пример – процесс выдачи кредита военнослужащим может отличаться от процесса выдачи кредита многодетной матери.

Как мы говорили выше, Process Discovery позволяет вычислить и стоимость выполнения задач. Отметим, что можно вычислять стоимость процесса, задавая как статические метрики стоимости, так и вариативные (см. скриншоты ниже).

На первом скриншоте показано, стоимость каких событий зависит от времени. В частности, это все уровни согласования оплаты счета. На втором скриншоте – детализированная настройка стоимости для события «Уровень согласования 1».

2). Есть возможность поглядеть на разновидности процессов, определить их массовость, стоимость выполнения задач и длительность. Можно посмотреть на диаграмму последовательностей и увидеть, что какой-то путь очень сложный и замороченный, но его нет смысла автоматизировать, он занимает, 0,01% от общего числа.

На блок-схеме стрелками показано, как этапы процесса между собой связаны. Например, можно увидеть «челночный бег» туда-обратно:

3). В ABBYY Timeline есть what-if анализ, который показывает экономию денег и времени на процесс до внедрения и после внедрения нового технологического решения, например, RPA.

ABBYY Timeline помогает находить все пары событий, показывать время, которое проходит между ними, и проверить гипотезу, сколько человеко-часов и денег можно сэкономить, если перевести процесс целиком на RPA. Например, в результате пилота RPA-системы менеджер узнал, что автоматическое копирование данных из одной системы в другую в 5 раз быстрее, чем вручную.

На скриншоте показаны

  • все пары событий, которые есть в процессах,
  • их количество,
  • сколько событий в каждом пути,
  • среднее время, которое занимало одно событие,
  • общее время на все события в сумме
  • и процент от общего времени, который заняли события.

Можно найти нужные пары событий, ввести желаемое время, которое должно проходить между ними, – в том числе время, подтвержденное результатами пилотирования новой автоматизированной системы, и увидеть экономию по всему множеству процессов.

ABBYY Timeline позволяет сравнить метрики процесса до автоматизации и после. Для этого можно взять, например, 2 временных интервала, два набора данных (до внедрения и после) и сравнить их.

Понять, как выглядит процесс

В ABBYY Timeline есть возможность восстановить обобщенную схему процесса: увидеть его этапы, их длительность и количество переходов между ними, а также с помощью анимации наглядно визуализировать самые быстрые (на схеме — зеленые) и самые долгие (на схеме – красные) процессы. Схему можно кастомизировать, добиваясь различного уровня детализации.

Например, менеджера может насторожить ситуация, почему на схеме процесса оплаты счетов ближе к самому последнему шагу стало больше желтых и красных точек. Это способ максимально высокоуровневого анализа: обнаружить какие-то сразу бросающиеся в глаза повторяющиеся этапы, узкие места, ненужные шаги.

Другой пример визуализации данных – с помощью инструмента «Путь». В отличие от схемы, здесь уже создается более детализированное представление о процессе оплаты счета и обо всех вариантах его прохождения.

«Пути» можно сортировать – по частотности, по длительности, по количеству шагов, по средней стоимости расходов. На слайде мы отметили красной рамкой самый популярный и максимально стройный маршрут – по нему процесс шел в почти 47% случаев. Мы можем оценить его среднюю стоимость, длительность и т.п.

На скриншоте также наглядно видны и особенности прохождения каждого из маршрутов. Например, третий по частности маршрут (по нему процесс идет в 8% случаев) обходится компании в 2 раза дороже, чем первый. Сама последовательность этапов тоже вызывает вопросы. Это означает, что на этот маршрут надо обратить особенное внимание и глубже изучить его.

Появление abi-систем

Эволюция BI-систем не стоит на месте, появляются новые подходы к аналитике, а данных становится все больше – именно поэтому возникла новая концепция Augmented Business Intelligence, которую выделили Gartner. 

Рис.9. Эволюция аналитики в BI-системы и в Augmented Business Intelligence
Рис.9. Эволюция аналитики в BI-системы и в Augmented Business Intelligence

Augmented Business Intelligence – это модель партнерства людей и искусственного интеллекта, которая ориентирована на совместное взаимодействие машины и человека для улучшения аналитики, принятия решений, подготовки данных и получения инсайтов.

Рис.10. Инновационность ABI-систем
Рис.10. Инновационность ABI-систем

ABI – это новая ступень развития BI-платформ, так как в ней есть сразу несколько преимуществ. В ней объединяется не только привычная аналитика и таблицы, но и также новые технологии: от дополненной и виртуальной реальности до решений с компьютерной графикой и 3D.

Рис.11. Отличия BI-системы от ABI-системы и ее преимущества
Рис.11. Отличия BI-системы от ABI-системы и ее преимущества

Становится очевидным, что BI-системы эволюционируют, они меняются вместе с обществом, наукой и человеком, и есть ряд трендов, которые свидетельствуют о движении в сторону простой, понятной, удобной и быстрой аналитики.

Рис.12. Тренды в развитии BI-систем
Рис.12. Тренды в развитии BI-систем

Тремя основными тенденциями бизнес-аналитики на 2020 год являются управление качеством данных (MD/DQ), DataViz и внедрение self-service BI-систем, и особое место занимает внедрение data-driven подхода в культуру компаний. Мы стараемся внедрять все эти подходы в решения с нашими заказчиками, и хотели бы побольше рассказать о самых интересных, на наш взгляд.

Развитие предиктивной аналитики

Цель любой BI-системы – систематизация и агрегация знаний, упрощение аналитического процесса для людей. С развитием технологий искусственного интеллекта аналитические системы смогут не только помочь выявить проблемы, но и дать рекомендации по их решению,  а также сделать прогноз развития ситуации в будущем.

В этом контексте также говорят о концепции DIKW: Data-Information-Knowledge-Wisdom.

Рис.13. Концепция DIKW
Рис.13. Концепция DIKW

Основная ее суть заключается в том, что с помощью новых технологий сформированная из разрозненных данных информациястановится знанием только в том случае, когда мы анализируем всю ситуацию и условия. Достичь “мудрости” можно лишь тогда, когда мы знаем, какие есть проблемы, как их решить и зачем их решать – что позволяет выйти за границы конкретного явления и использовать выявленные решения для других целей.

BI-системы в этом случае выступают инструментом достижения “верхушки” пирамиды – благодаря визуализации мы можем быстро проанализировать любые данные и информацию для получения знаний. Чтобы получить “мудрость” мы должны видеть всю ситуацию в пространстве, и здесь может помочь визуализация данных (Data Visualization) и 3D-технологии.

Дополнительный анализ:  "Аналитика оценок" от тайно использует вашу банковскую карту | Пикабу

Разработка метаданных

Разработка метаданных, это один из самых сложных и ответственных моментов. От качества метаданных зависит, как работоспособность системы (скорость формирования отчетов, корректность сформированных результатов и т. д.) так и удобство разработки отчетов.

Но несмотря на вышесказанное, сложность разработки метаданных прямо пропорциональна сложности источника данных. Например, чтобы построить реляционное описание нашего тестового источника данных, достаточно запустить мастер построения метаданных, несколько раз кликнуть кнопку «Next», и метаданные готовы.

Итак, как я уже писал ранее, метаданные – это описание источника данных. В IBM Cognos BI. Фундаментом метаданных являются объекты «Query Subject» и связи между ними. Объект «Query Subject» это синоним «View» из реляционных СУБД. Т. е. в основе «Query Subject» стоит запрос к СУБД, определяющий структуру объекта источника, а связи между «Query Subject» это описание логического взаимодействия между этими запросами.

Для создания метаданных в IBM Cognos BI используется отдельное приложение IBM Cognos Framework Manager (единственное не Web приложение в комплексе IBM Cognos BI). После запуска Framework Manager будет предложено создать новый проект (необходимо будет ввести наименование проекта и его расположение в локальной файловой системе).

Следует понимать, что проект Framework Manager (также именуемый как модель Framework Manager) это набор локальных файлов, с которыми работает локальная программа, а пакет метаданных это результат, который располагается на IBM Cognos BI сервере (если проводить аналогию с программированием, то проект – это исходный код, а пакет – это скомпилированное приложение). На базе одного проекта Framework Manager можно создать несколько наборов пакетов.

После того как проект Framework Manager создан, лучше всего начать работу с запуска мастера импорта метаданных (Action -> Run Metadata Wizard …). Мастер импорта предложит выбрать существующий источник данных или создать новый и позволит выбрать необходимые объекты для импорта.

В простейшем случае (например, когда источником данных является файл Excel, который в 99,9% случаев содержит данные в денормализованном виде) нужно будет полям объекта «Query Subject» задать правильный тип использования (атрибут «Usage») и на этом работу с моделью Framework Manager можно заканчивать и приступать к формированию и публикации пакета метаданных.

В более сложном варианте (как в нашем тестовом примере), необходимо будет проверить правильность импортированных связей между объектами «Query Subject», исправить некорректные и добавить недостающие. В более профессиональных вариантах есть возможность создавать вычисляемые поля, менять структуру «Query Subject», сформировать многомерное (multidimensional) представление, определить алгоритмы безопасности и т.д.

Создание и публикация пакета метаданных

После того как метаданные созданы, необходимо сформировать метапакет и опубликовать его на IBM Cognos BI сервере. Как я упоминал ранее, метапакет – это некоторое подмножество метаданных, которое публикуется на сервере и с которым работают все Web приложения комплекса IBM Cognos BI.

Настройки метапакета позволяют скрыть или не публиковать некоторые объекты метаданных. Например, в тестовых метаданных есть некоторый «Query Subject» [Country_RegDir], который влияет на логику обработки данных источника (является связующим звеном между страной и региональным директором), но не представляет ценности при разработке отчетов, вот такой объект метаданных имеет смысл скрыть на уровне пакета. Или, например, поля с идентификаторами, их тоже имеет смысл скрыть от пользователей метапакетов.

Чтобы создать метапакет необходимо в Framework Manager, в разделе «Packages» вызвать контекстное меню и выбрать пункт «Create -> Package», после чего появится мастер создания метапакета. После того как метапакет будет создан, система сразу предложит его опубликовать на сервере.

Начинающему пользователю можно сильно не вникать опции мастера публикации пакетов (просто нажимать кнопку Next и Publish). Единственно что, на последней вкладке (где будет не кнопка Next, а кнопка Publish) будет птичка «Verify package before publish», она определяет проверять ли метапакет на наличие логических неоднозначностей перед публикацией и отображает список этих неоднозначностей, если они буду найдены. Настоятельно рекомендую никогда не пропускать этот шаг и исправлять все найденные неоднозначности перед публикацией.

Создание отчетов (анализ данных)

Вот мы потихоньку и подобрались к самому интересному и регулярному процессу – это создание отчетов. Так сложилось что инструменты для создания регулярных отчетов и инструменты для быстрого анализа данных в IBM Cognos BI одни и те же (несмотря на то что в одних удобнее проводить быстрый анализ, а в других удобнее формировать регулярные отчеты, все они позволяют сохранять свои результаты в виде отчетов).

Лично я предпочитаю для всех BI задач использовать инструмент IBM Cognos Report Studio. Это наиболее универсальный инструмент, позволяющий строить отчеты фактически любой сложности и в тоже время предоставляет относительно удобные инструменты для быстрого анализа данных.

Предположим, что нам необходимо создать быстрый отчет, содержащий факт продаж в разрезе страны, товарной группы и периодичностью в квартал. Этот достаточно простой отчет можно сделать, выполнив следующие шаги:

  1. запустить веб приложение IBM Cognos Report Studio
  2. в окне приветствия нажать кнопку «создать» («create»)
  3. в списке базовых шаблонов выбрать «перекрестная таблица» («corsstab»)
  4. разместить элементы данных согласно схеме, представленной ниже
  5. запустить отчет на выполнение

После запуска отчета на выполнение, получится примерно такой результат.

Глядя на получившийся отчет можно смело сказать, что оформлен он откровенно плохо, числа не отформатированы, экономический смысл откровенно сомнителен и т. д. Но все эти недостатки оформления можно убрать путем задания свойств соответствующих элементов настроек, а чтобы экономический смысл был более интересен, можно, например, сделать план/факт анализ.

Например, чтобы сделать отчет, показанный ниже (на готовых метаданных) я, как специалист с опытом, потратил где-то 20-30 минут.

А чтобы его полностью переоформить в темную цветовую схему, я потратил где-то еще 10 минут.

Тренды в развитии bi-систем: эволюция до abi

Изначально аналитические отчеты разрабатывались сторонними организациями и IT-специалистами. На все интересующие вопросы топ-менеджеров сотрудники отвечали с помощью подготовленных статистических отчетов, подготовка которых занимала много времени и сил. Сам цикл получения аналитики был слишком растянут, что приводило к долгому принятию решений.

Современная бизнес-аналитика устроена по-другому: она интерактивна и доступна. Доступ к данным можно предоставить любому, пользователь может сам найти ответы на вопросы, кликая на интерактивные визуализации: графики, карты, таблицы или диаграммы.

Рис.7. Интерактивность современных BI-систем 
Рис.7. Интерактивность современных BI-систем 

За все время настолько изменилось представление о BI-системах, что большинство специалистов называют используемые self-service BI-системы (такие как Tableau, Power BI или Qlik Sense)

Рис.8. Разница между традиционной и self-service BI-системами
Рис.8. Разница между традиционной и self-service BI-системами

Вместо заключения

Процессы автоматизации и внедрения машинного обучения в нашу жизнь будут только ускоряться. Так же, как люди уже не хотят ехать наугад и поэтому пользуются навигаторами для расчета маршрута, времени и стоимости поездки, так и бизнес применяет PI для оценки эффекта от внедрения технологий в бизнес-процессы.

Раздобыть сегодня навигатор несложно, как и пользоваться инструментами Process Intelligence. Практически у любой компании есть цифровые следы, а значит, и база для изучения процессов. А теперь есть и техническая возможность использовать эти данные – заниматься аналитикой, предсказанием и получением полезных инсайтов.

В следующие несколько лет, по прогнозам международной аналитической компании NelsonHall, платформы PI станут средством обратной связи для бизнеса. То есть на основе результатов анализа бизнес-процессов можно будет в реальном времени, а не постфактум находить узкие места, упрощать, ускорять и автоматизировать процессы и их этапы внутри организации, быстрее внедрять RPA и оценивать влияние программных роботов на доходы компании, а значит, и точнее строить планы на будущее. Подробнее о результатах исследования рынка процессной аналитики читайте здесь.

Заключение

Системы бизнес-аналитики совершенствуются, и внедрение передовых платформ помогает достичь высоких результатов. Уже сейчас проводятся исследования, которые показывают эффективность грамотно выстроенной системы аналитики: 

Проследив эволюцию BI-систем, тренды и прогнозы развития, которые делают крупные исследовательские компании, выделим целый ряд трендов:

  • MD/MQ Data management

  • Внедрение data-driven культуры в работу

  • Внедрение self-service BI систем

  • Data Visualization

  • Data Storytelling 

  • Развитие ABI систем

  • Аналитика в real time

  • Data warehouse modernization

  • Data governance

  • Предиктивная аналитика

  • Внедрение моделей машинного обучения

  • Cloud BI

  • Самостоятельная работа с данными

  • BI-системы для мобильных устройств

  • Добавление и совершенствование уведомлений в BI-системах

Можно сделать вывод, что общая тенденция в развитии BI-систем – это уход в сторону упрощения аналитики и предоставления быстрого и полного взгляда на проблему для любого заинтересованного человека (включая тех, кто может не разбираться в аналитике).

Бизнес-аналитика становится проще и доступнее, и развитие технологий только способствует этому. 

Источники
Оцените статью
Аналитик-эксперт
Добавить комментарий

Adblock
detector