Аналитика по рынку недвижимости — Knight Frank

Аналитика по рынку недвижимости — Knight Frank Аналитика

С чего начинали

Раньше у каждого проекта был свой сайт. Проанализировав все минусы и плюсы, решили объединить все проекты на одном сайте вместе с CRM-системой, ориентированной на клиента.

Одной из проблем при работе с данными было то, что мы не видели путь клиента в целом от посещения сайта до заключения сделки, не анализировали вариации клиентского пути. Чтобы найти все пути, пришлось собирать информацию… отовсюду.

У нас была система сквозной аналитики для целей performance-рекламы, которая могла атрибутировать рекламные кампании по модели last-non-direct-click на звонки. У нас были отчеты для маркетинга по количеству звонков, встреч и сделок в Excel, на выгрузку которых из CRM наш единственный веб-аналитик (!) ежедневно тратил полдня. А еще у нас была Яндекс.Метрика 🙂

И была гора разных философских вопросов, но если уж мы решили строить огромную систему аналитики там, где этого еще никто не делал, то нужно идти в своем решении до конца.

Что предстоит сделать

Впереди у нас самый сложный этап трансформации — в головах людей. Мы только начали применять инновационные, нехарактерные технологии для недвижимости и уже сталкиваемся с тем, что некоторые понятия нужно внедрять и обосновывать на протяжении нескольких месяцев. Особенно сложно будет объяснить новые метрики для людей, которые уже давно работают в девелопменте и к такому не привыкли.

Кроме того, есть некоторые новые вещи, которые могут кратно увеличить сложность даже самых простых отчетов. Например, можно собрать аналитику «котлов спроса» и построить предиктив по «перетеканию» клиентов из проектных рекламных кампаний в поздние лид-стадии, но уже других, смежных проектов котла.

Когортные конверсии, учет реактивации лидов, методология A/B тестирования — всё это довольно новые вещи для людей, погруженных в ежедневную рутину девелопмента, которая состоит из звонков, встреч и сделок.

Но благодаря поддержке руководства компании, которое понимает необходимость подобных качественных трансформаций, мы можем планомерно двигаться по дороге настоящей цифровой революции в девелопменте.

После первого применения собранных и систематизированных нами данных мы вручную начнем совершать первые подходы с точки зрения создания «умных» предиктивных моделей на основе машинного обучения. Эти модели дадут дополнительное количество идей по потенциальным точкам роста в нашей воронке.

И конечно, мы планируем погружать в клиентскую аналитику всех коллег — чтобы повышать осознанность их действий и совершенствовать их взаимодействие со смежными подразделениями.

А можно как-то попроще?!

Да, можно! В системе существует “когортный режим”, позволяющий получить простую и понятную таблицу с нужными срезами и правильными данными. Ведь инструмент для бизнеса должен быть простым, понятным. Он должен скрывать все сложное, давать ответ, а не создавать головную боль. Когортный режим – инструмент не только для аналитиков, но и для маркетологов, управленцев.

Теперь можно пользоваться привычными глазу таблицами и диаграммами, работая с данными, отражающими реальную картину. Добавьте расход, сеансы, конверсии, цены лида, брони, объем продаж и любые другие показатели – сколько угодно одновременно.

Это простая таблица, где можно посмотреть что угодно. Вся это возможно благодаря person-based аналитике, в рамках которой платформа работает не сессиями, а с пользователями, то есть с теми самыми людьми, которые покупают квартиры, дома и парковочные места. Таким образом, можно проследить все точки взаимодействия с клиентом, и неважно как сильно они растянуты по времени.

Кто-то скажет: “Игорь, о чем ты! Когортный анализ есть даже в бесплатном GA, и много где еще!” Я уже давно мечтаю увидеть хотя бы один реально работающий проект, где когорты считают метрики сквозной аналитики, опираясь в том числе на рекламную статистику и данные из CRM.

Учет длинного цикла сделки и “скрытые” возможности когортного анализа – глубокая и очень интересная тема. Больше информации о работе с когортами и сквозной аналитике в нашем telegram-канале, присоединяйтесь.

Аналитика

Эксперты департамента консалтинга и аналитики ежемесячно следят за основными показателями рынка элитной недвижимости и новостроек элит и бизнес-класса. География проводимых исследований включает Москву, Московскую область, Санкт-Петербург, города-курорты Краснодарского края, а также другие города Российской Федерации и стран СНГ.

Дополнительный анализ:  Аналитик рассказал, почему майнить биткоин будет все труднее - ПРАЙМ, 17.08.2021

Каждый квартал мы публикуем обзоры рынка, где представлены такие параметры как анализ предложения, спроса, цены, анонс новых проектов, освещение основных трендов и прогноз развития рынка.

Аналитика по рынку недвижимости — knight frank

§

Ко второму кварталу рынок подошел с минимальным значением доступных лотов, но уже сейчас за счет высокой девелоперской активности постепенно восполняется дефицит.

В чем причина проблем

Основная ошибка — анализ поведения клиента только на поздних этапах. Многие компании не придают значения ранним касаниям клиента с брендом — увидел рекламный щит на улице, посмотрел ролик по телевизору. Они начинают его историю только с момента «созревания», когда человек уже задумался о покупке и рассматривает варианты.

Комплексно эту проблему в девелопменте никто не стремился решать, кто-то возмущался, что мы покушаемся на «стандарты индустрии». При этом у многих критиков система просто не сможет определить, когда тот же лид перепройдет в другом канале и получит за него же деньги. Или просто будут искусственно подкручивать эффективность отдельных методов привлечения трафика.

Но и это еще не всё. Даже если похожий на полноценную сквозную аналитику сетап и собран, у него может быть настолько сложная структура данных, что речь об изучении отдельных аспектов пути клиента даже не зайдет.

Полная Customer Journey Map включает больше этапов взаимодействия клиента с компанией, поэтому самая большая сложность — пройти весь путь клиента, найти все точки касания, проанализировать эти данные и свести всё вместе.

Звучит просто, а сделать очень сложно по четырем причинам:

  • Множество устройств для цифрового касания.
  • Желание анонимности клиента на ранних стадиях воронки: человек, только погуглив «купить квартиру в Томилино», не желает, чтобы его засыпало рекламными сообщениями и звонками, он не хочет оставлять свои данные.
  • Сведение вместе данных онлайн- и офлайн-касаний.
  • Высокие требования к чистоте данных и отсутствию семплирования.

Первые три пункта на длинной воронке сами по себе способны озадачить опытных специалистов по анализу клиентских данных. Для того чтобы правильно решить эти проблемы, требуется нетривиальный и сложный стек технологий.

Но самое главное — для решения этих проблем нужны специалисты высокого уровня, с широким набором компетенций и опытом внедрения решений в разных бизнес-моделях.

Важно

Часто бывает так, что, получая доступ к высокотехнологичным маркетинговым инструментам, сотрудники компании ударяются в эксперименты и на выходе получается что-то ужасное, неработающее и дорогое. Но нам повезло: опыта с системами аналитики клиентских данных и системами сквозной аналитики хватило, чтобы построить рабочую систему, избежав проблем взросления.

Теперь перейдем к тому, что получилось.

Исследования рынка недвижимости и аналитика от миэль

Как дела сегодня

Учимся работать со всеми полученными и собранными данными. Начинаем применять данные мультиканальной мультивороночной атрибуции, данные по учету и контролю статусов клиентов. Начинаем по-новому осознавать воронку продаж. Становятся прозрачными специализированные «бутылочные горлышки», которых мы ранее не замечали.

На сегодняшний день мы реализовали полностью тот комплекс подходов и инструментов, который имеет право называться сквозной аналитикой. Мы связали не отдельные кусочки воронки, а весь путь клиента с его вариативностью и многочисленными ROPO-переходами.

Например, мы можем понимать, что человек, который сходил на встречу в офис продаж, несмотря на то, что он нам не звонит и не берет трубку от менеджера, всё еще активен в воронке, потому что в регулярном режиме продолжает смотреть на сайте доступность и цену интересующей его квартиры.

Профиль клиента, ранее содержавший в среднем 6 событий, теперь содержит 72 события.

Наша текущая аналитика отслеживает около 170 типов событий. Покрыты все нюансы пользования сайтом: скроллы, табы, отображения значимых областей в экране, даже иногда хаверы — эффекты, которые появляются, когда на них только наводишь мышкой. Также в едином профиле собирается порядка двадцати типизированных событий по персонализации веба, работе сценариев автоматических коммуникаций и реакций клиента на них. Естественно, все события нашей MS Dynamics. Если честно, это — самое больное место, которое мы отлаживаем до сих пор.

Несколько месяцев назад в отладочном режиме заработала система контроля жизненного цикла клиента — наша гордость и повод для отдельных статей. Если очень упрощенно, то это что-то вроде RFM-контроля, только на единой покупке и с событийностью перемещения по сегментам.

В нашей базе хранится несколько сотен миллионов событий, и это — не сырые, а профильные, глубоко структурированные данные. Чтобы их структурировать и правильно «склеивать», работает система из семи типов идентификаторов.

Внедрение описанного комплекса систем позволило получить на 12,5% больше клиентов при тех же маркетинговых затратах.

Как работать с когортами в случае длинного цикла сделки?

Итак, чтобы правильно посчитать отдачу от вложений в маркетинг, необходимо взять конкретную группу людей, которых мы привлекли в конкретном периоде за конкретные деньги, и посмотреть, что с ними случилось не только внутри этого периода, но и в течение последующих.

В качестве такого периода, кстати, может быть вовсе не месяц – а, например, период, соответствующий времени проведения некой акции или действия какого-либо специального предложения. Эта группа людей – “когорта”. “Когортный анализ” решает проблему длинного цикла сделки. Он убирает все лишнее и показывает реальную картину.

Когортный анализ известен давным давно, так почему же его использую не все? Дело в том, что он требует нестандартной логики работы системы аналитики. На момент написания статьи, мне неизвестны системы сквозной аналитики (за исключением smartanalytics.io), позволяющие работать с когортами.

По факту, сейчас строить когорты – это долго и дорого. Строятся они мучительно, руками высококвалифицированных специалистов, закупивших решения по стримингу данных, вызывая массу вопросов к корректности и гибкости механики подсчета. На рынке просто долгое время не было представлено решений, которые могут “когортно” вычислить абсолютно любые метрики эффективности бизнеса по абсолютно любым срезам за несколько кликов.

Дополнительный анализ:  Какие технологические уловки и хитрости используют современные детективы - Афиша Daily

Причем когорты можно строить не только в безумных таблицах, но и использовать наглядную визуализацию самых разных типов. Выглядит это, например, вот так:

Что видно на этом скриншоте? Зеленые столбики – это объем продаж людям, пришедшим в марте. Синие столбики – результат рекламы апреля. Ну а розовые – мая. Благодаря такой визуализации, например, мы получаем реальную картину структуры майских продаж и понимание реального объема продаж, обусловленного мартовской рекламой.

Но в когортном анализе есть одна проблема – он не так прост для восприятия. Я бы даже сказал, что он немного мозгодробителен. Если в такой таблице будет больше данных (больше периодов, несколько показателей – да, такое тоже возможно) – читать ее станет довольно трудно.

Какие проблемы с аналитикой существуют в девелопменте

Очертить круг проблем и выстроить совершенно новую систему аналитики в «Самолете» пришли специалисты, до этого никак не связанные с девелопментом. С какими проблемами столкнулись:

  • В недвижимости очень длинная и сложная воронка продаж, сравнимая с B2B-продажами. Путь клиента — от 3 до 6 месяцев.
  • Современная сфера недвижимости — это омниканальный путь клиента, когда он может узнать о компании откуда угодно и либо зайти на сайт, либо позвонить в кол-центр или прийти в офис продаж.
  • Слабые модели атрибуции на длинной воронке: очень много рекламных касаний. Модели одного касания вообще не учитывают ряд каналов, а многие модели множественных точек касания искажают реальную ценность промежуточных кампаний.
  • Нужна модель атрибуции, которая способна разложить ценность всех касаний клиента от первой коммуникации до момента покупки или показать, на каком моменте он ушел и почему.
  • Очень много касаний происходит офлайн, и их нужно как-то найти и объединить с другими цифровыми следами. Низкий процент сведения активности в разных точках касания, сложно создать единый профиль клиента по всем коммуникациям.

Сквозная аналитика ‹ smartis

Многие маркетологи используют сквозную аналитику только чтобы быстро построить красивые отчёты.
Это&nbspэкономит пару часов в неделю, но не даёт никакой пользы от самой сквозной аналитики.

В итоге за красивыми отчётами и графиками маркетолог не видит главного — взаимосвязей разных показателей,
влияния результатов маркетинга на результаты продаж.

Без этого невозможно принимать верные решения, улучшать рекламные кампании и повышать продажи.

Три системы для клиентских данных

Приоткроем завесу тайны и обрисуем примерно четверть реальной схемы вращения клиентских данных:

Новая схема, кроме унаследованной Microsoft Dynamics, состоит из двух параллельных систем сквозной аналитики, составляющих единую систему.

Первая — связка Google BigQuery и OWOX BI и несколько самописных решений. Вторая — это CDXP Exponea для создания единого пользовательского профиля клиента и использования этих данных в реальном времени. Мы не скромничаем: подобного комплексного решения в девелопменте пока не существует. Взяли самые современные штуки из других рынков с доказанной на практике эффективностью.

Забавно, что если посмотреть на тот же самый сетап в той половине, где OWOX, эта же самая схема может выглядеть совершенно иначе и куда интереснее:

Получение и связывание клиентских данных из CRM, расходов и данных атрибуций из OWOX BI и кол-трекинга вместе с очисткой данных позволило выстроить детальные воронки как по каждому проекту, так и по каждой когорте клиентов. Всё это легло в основу системы предиктивной performance-аналитики. Отдельным сложным куском работ является правильная визуализация этого объема данных, эту задачу мы решаем до сих пор.

Распределение всех клиентских данных по временным когортам позволило точнее прогнозировать конверсии по отдельным проектам на основе предыдущей и текущей рекламной активности. С историей взаимодействий с клиентами по идущим рекламным кампаниям на руках мы с большой точностью знаем «хвост» клиентов, которые дойдут до заключения договора, и можем усиливать рекламу по тем объектам, по которым прогнозируем недостаточное количество сделок.

Exponea, получая и объединяя данные по клиентскому взаимодействию, позволила узко сегментировать клиентов и автоматизировать клиентское взаимодействие для улучшения конверсии. Высокая чистота данных даже по малому числу клиентов гарантирует, что построенные автоматизации работают достаточно хорошо и цифрам можно доверять.

Оцените статью
Аналитик-эксперт
Добавить комментарий

Adblock
detector